Skip to main content
Log in

Transist dark energy and thermodynamical aspects of the cosmological model in teleparallel gravity

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this article, the perfect fluid is introduced for plane symmetric space–time in the framework of teleparallel gravity using hybrid expansion law (HEL). The behaviour of accelerating Universe is discussed by considering the depiction model of f(T) gravity, i.e. \(f(T)=T^{\eta }\). The geometrical and physical parameters of the model are studied. An effective equation of state (EoS) has been investigated in the cosmological evolution with perfect fluid. The basic equations of thermodynamics have been deduced and the thermodynamical aspects of the model have been discussed. Thermodynamic temperature and entropy density of the model are also obtained. The statefinder parameters and jerk parameter analysis are discussed for our obtained model to distinguish our model from other dark energy models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A G Reiss et al, Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S Perlmutter et al, Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. C Fedeli, L Moscardini and M Bertelmann, Astron. Astrophys. 500, 667 (2009)

    Article  ADS  Google Scholar 

  4. Z Y Huang, B Wang, E Abdalla and R K Sul, J. Cosmol. Astropart. Phys. 13, 0605 (2006)

    Google Scholar 

  5. R R Caldwell and M Doran, Phys. Rev. D 69, 103517 (2004)

    Article  ADS  Google Scholar 

  6. S F Daniel, Phys. Rev. D 77, 103513 (2008)

    Article  ADS  Google Scholar 

  7. R Ferraro and F Fiorini, Phys. Rev. D 75, 084031 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. G R Bengochea and R Ferraro, Phys. Rev. D 79, 124019 (2009)

    Article  ADS  Google Scholar 

  9. T Harko, F S N Lobo, S Nojiri and S D Odintsov, Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  10. V F Cardone, H Farajollahi and A Ravanpak, Phys. Rev. D 84, 043527 (2011)

    Article  ADS  Google Scholar 

  11. M Jamil, D Momeni, N S Serikbayev and R Myrzakulov, Astrophys. Space Sci. 339, 37 (2012)

    Article  ADS  Google Scholar 

  12. M Sharif and S Azeem, Astrophys. Space Sci. 342, 521 (2012)

    Article  ADS  Google Scholar 

  13. B Mirza and F Oboudiat, Gen. Relativ. Gravit. 51(7), 96 (2019)

    Article  ADS  Google Scholar 

  14. K Bamba et al, J. Cosmol. Astropart. Phys. 1101, 021 (2011)

    Article  ADS  Google Scholar 

  15. M Sharif and S Rani, Phys. Scr. 84, 055005 (2011)

    Article  ADS  Google Scholar 

  16. T Wang, Phys. Rev. D 84, 024042 (2011)

    Article  ADS  Google Scholar 

  17. C Bohmer, A Mussa and N Tamanini, Class. Quantum Grav. 28, 245020 (2011)

    Article  ADS  Google Scholar 

  18. E V Linder, Phys. Rev. D 81, 127301 (2010)

    Article  ADS  Google Scholar 

  19. K Bamba and C Geng, J. Cosmol. Astropart. Phys.  11, 008 (2011)

    Article  ADS  Google Scholar 

  20. M Sharif and Shamaila Rani, Eur. Phys. J. Plus 129, 237 (2014)

    Article  Google Scholar 

  21. M Sharif and Shamaila Rani, Int. J. Theor. Phys54, 2524 (2015)

    Article  Google Scholar 

  22. P Wu and H Yu, Phys. Lett. B 692, 176 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. R J Yang, Eur. Phys. J. C 71, 1797 (2011)

    Article  ADS  Google Scholar 

  24. U Wu and H Yu, Eur. Phys. J. C 71, 1552 (2011)

    Article  ADS  Google Scholar 

  25. K Karami and A Abdolmaleki, Res. Astron. Astrophys. 13, 757 (2013)

    Article  ADS  Google Scholar 

  26. K Karami and A Abdolmaleki, J. Phys. Conf. Ser. 375, 032009 (2012)

    Article  Google Scholar 

  27. J B Dent, S Dutta and E N Saridakis, J. Cosmol. Astropart. Phys. 1101, 009 (2011)

    Article  ADS  Google Scholar 

  28. B Li, T P Sotiriou and J D Barrow, Phys. Rev. D 83, 064035 (2011)

    Article  ADS  Google Scholar 

  29. S H Chen et al, Phys. Rev. D 83, 023508 (2011)

    Article  ADS  Google Scholar 

  30. M Sharif and S Rani, Mod. Phys. Lett. A  26, 1657 (2011)

    Article  ADS  Google Scholar 

  31. M E Rodrigues, A V Kpadonou, F Rahaman, P J Oliveira and M J S Houndjo, arXiv:1408.2689v1 [gr-qc] (2014)

  32. M Sharif and S Azeem, Commun. Theor. Phys. 61, 482 (2014)

    Article  ADS  Google Scholar 

  33. M Jamil and M Yussouf, arXiv:1502.00777v1 [gr-qc] (2015)

  34. G Abbas, A Kanwal and M Zubair, Astrophys. Space Sci357, 109 (2015)

    Article  ADS  Google Scholar 

  35. P Channuie and D Momeni, arXiv:1712.07927v2 [gr-qc] (2018)

  36. M Khurshudyan, R Myrzakulov and A S Khurshudyan, Mod. Phys. Lett. A 32(18), 1750097 (2017)

    Article  ADS  Google Scholar 

  37. M Skugoreva and A V Toporensky, Eur. Phys. J. C 78, 377 (2018)

    Article  ADS  Google Scholar 

  38. S Capozziello, G Lambiase and E N Saridakis, Eur. Phys. J. C Part Fields 77(9), 576 (2017)

    Article  ADS  Google Scholar 

  39. L Campanelli, P Cea and L Tedesco, Phys. Rev. Lett. 97, 131302 (2006)

    Article  ADS  Google Scholar 

  40. L Campanelli, Phys. Rev. D 80, 063006 (2009)

    Article  ADS  Google Scholar 

  41. A Gruppo, Phys. Rev. D 76, 083010 (2007)

    Article  ADS  Google Scholar 

  42. O Akarsu et al, J. Cosmol. Astropart. Phys01, 022 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. L Avile’s et al, J. Phys. Conf. Ser. 70, 012010 (2016)

    Article  Google Scholar 

  44. S Kumar, Gravit. Cosmol. 19, 284 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. A Pradhan and R Jaisaval, Int. J. Geom. Methods Mod. Phys. 15, 1850076 (2018)

    Article  MathSciNet  Google Scholar 

  46. C R Mahanta and N Sharma, New Astron. 57, 70 (2017)

    Article  ADS  Google Scholar 

  47. A K Yadav et al, Int. J. Theor. Phys. 54, 1671 (2015)

    Article  Google Scholar 

  48. R Zia, D C Maurya and A Pradhan, Int. J. Geom. Methods Mod. Phys. 15, 1850168 (2018)

    Article  MathSciNet  Google Scholar 

  49. A K Yadav and V Bhardwaj, Res. Astron. Astrophys. 18, 64 (2016)

    Article  ADS  Google Scholar 

  50. B Mishra and S K Tripathi, Mod. Phys. A 30, 1550175 (2015)

    Article  ADS  Google Scholar 

  51. U K Sharma et al, J. Astrophys. Astron40, 2 (2019)

    Article  ADS  Google Scholar 

  52. P H R S Moraes, Astrophys. Space Sci. 352, 273 (2014)

    Article  ADS  Google Scholar 

  53. P H R S Moraes, G Ribeiro and R A C Correa, Astrophys. Space Sci361, 227 (2016)

    Article  ADS  Google Scholar 

  54. P H R S Moraes and P K Sahoo, Eur. Phys. J. C 77, 480 (2017)

    Article  ADS  Google Scholar 

  55. K S Thorne, Astrophys. J. 148, 51 (1967)

    Article  ADS  Google Scholar 

  56. J Kristian and R K Sachs, Astrophys. J. 143, 379 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  57. R Kantowski and R K Sachs, J. Math. Phys. 7, 433 (1966)

    Article  ADS  Google Scholar 

  58. B Wang, Y Gong and E Abdalla, Phys. Rev. D 74, 083520 (2006)

    Article  ADS  Google Scholar 

  59. P A R Ade et al, Astron. Astrophys. 571, 16 (2014)

    Article  Google Scholar 

  60. G F Hinshaw et al, Astrophys. J. Suppl. Ser. 208, 19 (2013)

    Article  ADS  Google Scholar 

  61. R K Knop et al, Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  62. M Tegmark et al, Phys. Rev. D 69, 103501 (2004)

    Article  ADS  Google Scholar 

  63. E Komatsu et al, Astron. Astrophys. Suppl. Ser. 180, 330 (2009)

    Article  ADS  Google Scholar 

  64. B Feng, X LWang and X M Zhang, Phys. Lett. B 607, 35 (2015)

    Article  ADS  Google Scholar 

  65. J D Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  66. S W Hawking, Commun. Math. Phys43(3), 199 (1975)

    Article  ADS  Google Scholar 

  67. K Karami and A Abdolmaleki, J. Cosmol. Astropart. Phys. 2012(04), 007 (2012)

    Article  Google Scholar 

  68. Y S Myung, arXiv:0812.0618v1 [gr-qc]

  69. M S Singh and S S Singh, Turk. J. Phys. 42, 198 (2018)

    Google Scholar 

  70. V Sahni, T D Saini, A A Starobinsky and U Alam, JETP Lett. 77, 201 (2003)

    Article  ADS  Google Scholar 

  71. T Chiba and T Nakamura, Prog. Theor. Phys. 100, 1077 (1998)

    Article  ADS  Google Scholar 

  72. R D Blandford, M Amin and E A Baltz, Phys. Lett. B 535, 329 (2004)

    Google Scholar 

  73. M Visser, Class. Quantum Gravity 21, 2603 (2004)

    Article  ADS  Google Scholar 

  74. V Sahni, arXiv:astro-ph/0211084 (2002)

  75. A Y Shaikh, A S Shaikh and K S Wankhade, J. Astrophys. Astron. 40, 25 (2019)

    Article  ADS  Google Scholar 

  76. S D Katore, K S Adhav, A Y Shaikh and M M Sanchet, Astrophys. Space Sci. 333, 333 (2011)

    Article  ADS  Google Scholar 

  77. S D Katore, K S Adhav, A Y Shaikh and N K Sarkate, Int. J. Theor. Phys. 49, 2558 (2010)

    Article  Google Scholar 

  78. S D Katore and A Y Shaikh, Prespacetime J. 3(11),1087 (2012)

    Google Scholar 

  79. S D Katore and A Y Shaikh, Bull. J. Phys. 39, 241 (2012)

    Google Scholar 

  80. S D Katore and A Y Shaikh, Afr. Rev. Phys. 9, 0035 (2014)

    Google Scholar 

  81. S D Katore and A Y Shaikh, Rom. J. Phys. 59(7–8), 715 (2014)

    Google Scholar 

  82. S D Katore and A Y Shaikh, Astrophys. Space Sci. 357(1), 27 (2015)

    Article  ADS  Google Scholar 

  83. S D Katore and A Y Shaikh, Bulg. J. Phys. 41, 274 (2015)

    Google Scholar 

  84. S D Katore, A Y Shaikh and S Bhaskar, Bulg. J. Phys. 41(1), 34 (2014)

    Google Scholar 

  85. S D Katore, A Y Shaikh, D V Kapse and S A Bhaskar, Int. J. Theor. Phys. 50, 2644 (2011)

    Article  Google Scholar 

  86. S D Katore and A Y Shaikh, Int. J. Theor. Phys. 51, 1881 (2012)

    Article  Google Scholar 

  87. S D Katore and A Y Shaikh, Afr. Rev. Phys. 7, 0004 (2012)

    Google Scholar 

  88. S D Katore and A Y Shaikh, Afr. Rev. Phys. 7, 0054 (2012)

    Google Scholar 

  89. A Y Shaikh, Adv. Astrophys. 2(3), 155 (2017)

    Google Scholar 

  90. A Y Shaikh and S D Katore, Pramana – J. Phys. 87, 83 (2016)

    Article  ADS  Google Scholar 

  91. A Y Shaikh and S D Katore, Pramana – J. Phys. 87: 88 (2016)

    Article  ADS  Google Scholar 

  92. A Y Shaikh and K S Wankhad, Phys. Astron. Int. J. 1(4), 00020 (2017)

    Article  Google Scholar 

  93. A Y Shaikh and K S Wankhade, Theor. Phys. 2(1), 34 (2012)

    Google Scholar 

  94. A Y Shaikh, K S Wankhade and S R Bhoya, Int. J. Sci. Res. Sci. Technol. 3(8), 1248 (2017)

    Google Scholar 

  95. S Chakrabarti, J L Said and K Bamba, Eur. Phys. J. C 79, 454 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge their deep sense of gratitude to the anonymous eminent referee whose valuable suggestions have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Y Shaikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.Y., Shaikh, A.S. & Wankhade, K.S. Transist dark energy and thermodynamical aspects of the cosmological model in teleparallel gravity . Pramana - J Phys 95, 19 (2021). https://doi.org/10.1007/s12043-020-02047-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02047-z

Keywords

PACS Nos

Navigation