Skip to main content

Advertisement

Log in

Heavy metal concentration and ecological risk assessment in surface sediments of Dal Lake, Kashmir Valley, Western Himalaya

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Lake systems act as a significant source of freshwater supply for the local population living in the Kashmir Valley. The water level in Kashmir Himalayan lakes is predominantly controlled by melt water generated from seasonal snowmelt and high-altitude glaciers. Heavy metal contamination poses a serious threat of vulnerability to these freshwater ecosystems. To evaluate the heavy metal status and their risk in lake sediments, surface sediment samples collected from Dal Lake located in Kashmir Valley, NW Himalaya were analyzed for spatial variations and estimating pollution levels of selected heavy metals. Geo-accumulation index (Igeo) and enrichment factor (EF) revealed that the sediments were moderately enriched in Cr, Ni, Cu, Zn, Pb, Fe, and Mn. The Pollution Load Index (PLI) indicates progressive lake degradation from margins towards the central parts of the lake. Relatively higher contents of total organic carbon (TOC) and nitrogen indicate eutrophic status of this lake basin. Most of the sediments exhibited C/N ratio of < 4, suggesting large in situ organic matter (OM) production possibly due to high nitrification. The results highlight that the anthropogenic activities had a significant impact in altering the lake environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abad-Valle P, Alvarez-Ayuso E, Murciego A (2015) Evaluation of ferrihydrite as amendment to restore an arsenic-polluted mine soil. Environ Sci Pollut Res 22:6778–6788

    Article  Google Scholar 

  • Achyuthan H, Lone AM, Shah RA, Fousiya AA (2020) Climate, C/N ratio and organic matter accumulation: An overview of examples from Kashmir Himalayan Lakes. In: Dimri A, Bookhagen B, Stoffel M, Yasunari T (eds) Himalayan Weather and Climate and their Impact on the Environment. Springer, Cham, pp 185–203. https://doi.org/10.1007/978-3-030-29684-1_11

  • Algül F, Beyhan M (2020) Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci Rep 10:11782. https://doi.org/10.1038/s41598-020-68833-2

    Article  Google Scholar 

  • Babeesh C, Lone A, Achyuthan A (2017) Geochemistry of Manasbal lake sediments, Kashmir: weathering, provenance and tectonic setting. J Geol Soc India 89:563–572. https://doi.org/10.1007/s12594-017-0645-4

    Article  Google Scholar 

  • Babeesh C, Achyuthan H, Resmi M, Nautiyal CM, Shah RA (2019) Late Holocene paleoenvironmental changes inferred from Manasbal Lake sediments, Kashmir Valley, India. Quat Int 507:156–171

    Article  Google Scholar 

  • Badar B, Romshoo SA, Khan MA (2013) Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover. J Eart Syst Sci 122:433–449. https://doi.org/10.1007/s12040-013-0285-z

    Article  Google Scholar 

  • Bhatt DK (1982) A review of the stratigraphy of the Karewa Group (Pliocene/Quaternary), Kashmir. Man and Environment 6:46e55

    Google Scholar 

  • Boyle J, Rose NL, Appleby PG, Birks HJB (2004) Recent environmental change and human impact on Svalbard: the lake sediment geochemical record. J Paleolimnol 31:515–530. https://doi.org/10.1023/B:JOPL.0000022549.07298.6e

    Article  Google Scholar 

  • Dong S, Li Z, Chen Q, Wei Z (2018) Total organic carbon and its environmental significance for the surface sediments in groundwater recharged lakes from the Badain Jaran Desert Northwest China. J Limnol 77(1):121–129. https://doi.org/10.4081/jlimnol.2017.1667

    Article  Google Scholar 

  • Dixit Y, Tandon SK (2016) Hydroclimatic variability on the Indian-subcontinent in the past millennium: review and assessment. Eart Sci Rev 161:1–15. https://doi.org/10.1016/j.earscirev.2016.08.001

    Article  Google Scholar 

  • Goher ME, Farhat HI, Abdo MH, Salem SG (2014) Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. The Egypt J Aquat Res 40(3):213–224

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution controls a sedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Hou D, Al-Tabbaa A, Chen H, Mamic I (2014) Factor analysis and structural equation modeling of sustainable behaviour in contaminated land remediation. Journal of Cleaner Production 84:439–449. https://doi.org/10.1016/j.jclepro.2014.01.054

    Article  Google Scholar 

  • Iqbal J, Saleem M, Shah MH (2016) Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Geochemistry 76:171–177. https://doi.org/10.1016/j.chemer.2016.02.002

    Article  Google Scholar 

  • Jeelani G, Shah AQ (2006) Geochemical characteristics of water and sediment from the Dal Lake, Kashmir Himalaya: constraints on weathering and anthropogenic activity. Environ Geol 50:112–123. https://doi.org/10.1007/s00254-005-0168-y

    Article  Google Scholar 

  • Jeelani G, Lone SA, Nisa AU, Mukherjee A, Deshpande RD (2020) Sources and processes of groundwater arsenic mobilization in upper Jhelum basin. Western Himalayas J Hydrol 591:125292. https://doi.org/10.1016/j.jhydrol.2020.125292

    Article  Google Scholar 

  • Johnson TC, Evans JE, Eisenreich SJ (1982) Total organic carbon in Lake Superior sediments: comparisons with hemipelagic and pelagic marine environments 1. Limnol Oceanograph 27(3):481–491

    Article  Google Scholar 

  • Kango RA, Dubey KP, Zutshi D (1987) Sediment chemistry of Kashmir Himalayan lakes: clay mineralogy. Chemical Geol 64:121–126. https://doi.org/10.1016/0009-2541(87)90157-4

    Article  Google Scholar 

  • Kaul V, Hando VK, Raina R (1980) Physico-chemical characteristics of Nilnag- Ahigh altitude forest lake in Kashmir and its comparison with the valley lakes. Proceed Ind Nat Sci Acad 46:528–541

    Google Scholar 

  • Krumbein WC, Petijohn FJ (1938) Manual of sedimentary petrography. Appleton Century-Crofts, Inc, New York, p 549

  • Lone A, Babeesh C, Achyuthan H, Chandra R (2017a) Evaluation of environmental status and geochemical assessment of sediments, Manasbal Lake, Kashmir, India. Arab J Geosci 10:1–18

  • Lone A, Fousiya AA, Shah R, Achyuthan H (2018a) Reconstruction of paleoclimate and environmental fluctuations since the early Holocene period using organic matter and C:N proxy records: a review. J Geol Soc Ind 91:209–214. https://doi.org/10.1007/s12594-018-0837-60

  • Lone A, Achyuthan H, Shah RA, Sangode SJ, Fousiya AA (2018b) Environmental magnetism and heavy metal assemblages in lake bottom sediments of Anchar, Srinagar, NW Himalaya. India Internat j environment res 12:489–502. https://doi.org/10.1007/s41742-018-0108-9

  • Lone AM, Shah RA, Achyuthan H, Fousiya AA (2018c) Geochemistry, spatial distribution and environmental risk assessment of the surface sediments: Anchar Lake. Kashmir Valley. India Environment Eart Sci 77. https://doi.org/10.1007/s12665-018-7242-8

  • Lone AM, Shah RA, Achyuthan H, Rafiq M (2018d) Source identification of organic matter using C/N ratio in freshwater lakes of Kashmir Valley, Western Himalaya, India. Himal Geol 39(1):101–114

  • Lone AM, Achyuthan H, Shah RA, Sangode SJ, Kumar P, Chopra S, Sharma R (2019a) Paleoenvironmental shifts spanning the last ~6000 years and recent anthropogenic controls inferred from a high-altitude temperate lake: Anchar Lake. NW Himalaya The Holocene 30:23–36. https://doi.org/10.1177/0959683619865599

  • Lone AM, Achyuthan H, Chakraborty S, Metya A, Datye A, Kripalani RH, Fousiya AA (2020) Controls on the isotopic composition of daily precipitation characterized by dual moisture transport pathways at the monsoonal margin region of North- Western India controls on the isotopic composition of daily precipitation characterized by dual moisture transport pathways at the monsoonal margin region of North- Western India. J Hydrol 588:125106. https://doi.org/10.1016/j.jhydrol.2020.125106

    Article  Google Scholar 

  • Lone SA, Jeelani G, Deshpande RD (2017b) Evaluating the sensitivity of glacier to climate by using stable water isotopes and remote sensing. Environ Earth Sci 76:598. https://doi.org/10.1007/s12665-017-6937-6

  • Lone SA, Jeelani G, Deshpande RD, Mukherjee A (2019b) Stable isotope (δ18O and δD) dynamics of precipitation in a high altitude Himalayan cold desert and its surroundings in Indus river basin. Ladakh Atmos Res 221:46–57. https://doi.org/10.1016/j.atmosres.2019.01.025

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2011) C:N ratio of sediments in a sewage fed urban lake. International J Geol 5(3):86–92

    Google Scholar 

  • Matter M, Anselmetti F, Jordanoska B, Wagner B, Wessels M, Wüest A (2010) Carbonate sedimentation and effects of eutrophication observed at the Kališta subaquatic springs in Lake Ohrid (Macedonia). Biogeosciences 7(11):3755–3767

    Article  Google Scholar 

  • Meyers AP, Ishiwatari R (1993) Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organ Geochem 20:867–900. https://doi.org/10.1016/0146-6380(93)90100-P

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, physical and geochemical methods, vol 2. Kluwer Academic Publishers, Dordrecht, pp 239–265. https://doi.org/10.1007/0-306-47669-X

    Chapter  Google Scholar 

  • Middleton GV (1976) Hydraulic interpretation of sand size distributions. J Geol 84(4):405–426

    Article  Google Scholar 

  • Mir IA, Mir RA (2019) Geochemistry of surface sediments in parts of Bandipora–Ganderbal areas, Kashmir Valley, Western Himalaya: implications for provenance and weathering. Journal of Earth System Sciences 128:223. https://doi.org/10.1007/s12040-019-1248-9

    Article  Google Scholar 

  • Muller G (1979) Schwermetalle in den sediments des Rheins-Veranderungen seitt. Umschau 79:778–783

    Google Scholar 

  • Najar A, Basheer A (2012) Assessment of seasonal variation in water quality of Dal Lake (Kashmir, India) using multivariate statistical techniques. Water Pollution XI 164:123–134. https://doi.org/10.2495/WP120111

    Article  Google Scholar 

  • Qayoom I, Balkhi MH, Mukhtar M (2018) Assessment of dimethoate residues from dal Lake of Jammu and Kashmir&nbsp;India. Chemical Science Review and Letters 7(26):578–581

    Google Scholar 

  • Rashid SA, Ganai JA, Masoodi A (2015) Major and trace element geochemistry of lake sediments, India: implications for weathering and climate control. Arabian Jour Geosci 8:5677–5684

    Article  Google Scholar 

  • Rather IA, Dar AQ (2020) Assessing the impact of land use and land cover dynamics on water quality of Dal Lake, NW Himalaya. India. Appl Water Sci 10:219. https://doi.org/10.1007/s13201-020-01300-5

    Article  Google Scholar 

  • Romshoo SA, Muslim M (2011) Geospatial modeling for assessing the nutrient load of a Himalayan Lake. Environ Earth Sci 64:1269–1282. https://doi.org/10.1007/s12665-011-0944-9

    Article  Google Scholar 

  • Sakan SM, Djordjevic DS, Manojlovic DD, Polic PS (2009) Assessment of heavy metal pollutants accumulation in the Tisza river sediments. J Environm Manag 90:3382–3390. https://doi.org/10.1016/j.jenvman.2009.05.013

    Article  Google Scholar 

  • Saleem M, Jeelani G, Shah RA (2015) Hydrogeochemistry of Dal Lake and the potential for present, future management by using facies, ionic ratios, and statistical analysis. Environm Eart Sci 74:3301–3313. https://doi.org/10.1007/s12665-015-4361-3

    Article  Google Scholar 

  • Saleem M, Jeelani G (2016) Anthropogenic induced evolution of chemical quality of water in Dal Lake, Srinagar. J Res Develop 16:69–80

    Google Scholar 

  • Saleem M, Jeelani G (2017) Geochemical, isotopic and hydrological mass balance approaches to constrain the lake water–groundwater interaction in Dal Lake Kashmir Valley. Environmen Eart Sci 76:533. https://doi.org/10.1007/s12665-017-6865-5

    Article  Google Scholar 

  • Saluja R, Garg JK (2017) Trophic state assessment of Bhindawas Lake, Haryana. India. Environ Monit Assess 189:32. https://doi.org/10.1007/s10661-016-5735-z

    Article  Google Scholar 

  • Sarah S, Jeelani G, Ahmed S (2011) Assessing variability of water quality in a groundwater-fed perennial lake of Kashmir Himalayas using linear geostatistics. J Eart Sys Sci 120:399–411. https://doi.org/10.1007/s12040-011-0081-6

    Article  Google Scholar 

  • Sarkar S, Prakasam M, Upasana S, Bhushan R, Gaury PK, Meena NK (2016) Rapid sedimentation history of Rewalsar Lake, Lesser Himalaya, India during the last fifty years-estimated using Cs and Pb dating techniques: a comparative study with other North-Western Himalayan Lakes. Himal Geol 37:1–7

    Google Scholar 

  • Shah RA, Achyuthan H, Lone AM, Ramanibai R (2017) Diatoms, spatial distribution and physicochemical characteristics of Wular Lake sediments, Kashmir Valley, Kashmir. J Geol Soc Ind 90:159–168. https://doi.org/10.1007/s12594-017-0694-8

    Article  Google Scholar 

  • Shah RA, Lone SA (2019) Hydrogeomorphological mapping using geospatial techniques for assessing the groundwater potential of Rambiara river basin Western Himalayas. Appl Water Sci 9:64. https://doi.org/10.1007/s13201-019-0941-9

    Article  Google Scholar 

  • Shah RA, Achyuthan H, Sangode SJ, Lone AM, Rafiq M (2020a) Mineral magnetic and geochemical mapping of the Wular Lake sediment, Kashmir Valley, NW Himalaya. Aquat Geochem 26:31–52. https://doi.org/10.1007/s10498-019-09364-9

  • Shah RA, Achyuthan H, Lone AM, Kumar S, Kumar P, Sharma R, Amir M, Singh AK, Dash C (2020b) Holocene palaeoenvironmental records from the high-altitude Wular Lake. Western Himalayas The Holocene 30:733–743. https://doi.org/10.1177/0959683619895592

  • Shah RA, Achyuthan H, Lone AM, Kumar P, Ali A, Rahman A (2020c) Palaeoenvironment shifts during last ~500 years and eutrophic evolution of the Wular Lake, Kashmir Valley. India Limnol 22:111–120. https://doi.org/10.1007/s10201-020-00639-7

  • Shah RA, Achyuthan H, Lone AM, Lone SA, Malik SM (2020d) Environmental risk assessment of lake surface sediments using trace elements: a case study of the Wular Lake. J Geol Soc Ind 95:145–151. https://doi.org/10.1007/s12594-020-1403-6

  • Sheela AM, Letha J, Joseph S, Thomas J (2012) Assessment of heavy metal contamination in coastal lake sediments associated with urbanization: Southern Kerala, India. Lakes and Reservoirs: Res Manag 17(2):97–112

    Article  Google Scholar 

  • Sheikh JA, Jeelani G, Gavali RS, Shah AR (2014) Weathering and anthropogenic influences on the water and sediment chemistry of Wular Lake, Kashmir Himalaya. Environ Earth Sci 6:2837–2846. https://doi.org/10.1007/s12665-013-2661-z

    Article  Google Scholar 

  • Shirani M, Afzali KN, Jahan S, Strezov V, Soleimani-Sardo M (2020) Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in Southeast Iran. Sci Rep 10:4775. https://doi.org/10.1038/s41598-020-61838-x

    Article  Google Scholar 

  • Sun D, Bloemendal J, Rea DK, Vandenberghe J, Jiang F, An Z, Su R (2002) Grain-size distribution function of polymodal sediments in hydraulic and Aeolian environments, and numerical partitioning of the sedimentary components. Sed Geol 152(3–4):263–277

    Article  Google Scholar 

  • Tang W, Shan B, Zhang H, Zhang W, Zhao Y, Ding Y, Rong N, Zhu X (2014) Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China. Scientific Reports 4:7152. https://doi.org/10.1038/srep07152

    Article  Google Scholar 

  • Tomlinson DC, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgolander Meeresunters 33:566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  • Van Andel JH, Postma H (1954) Recent sediments of Gulf of Paria, reports of Orinco shelf expedition. North Holland Publishing Co., Amsterdam

    Google Scholar 

  • Vass KK (1980) On the trophic status and conservation of Kashmir Lakes. Hydrobiologia 68:9–15. https://doi.org/10.1007/BF00009058

    Article  Google Scholar 

  • Wang L, Wang Y, Zhang W, Xu C, An Z (2014) Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environmental Earth Science 71:1183–1193. https://doi.org/10.1007/s12665-013-2522-9

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta 59:1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  Google Scholar 

  • Xiao J, Chang Z, Fan J, Zhou L, Zhai D, Wen R, Qin X (2012) The link between grain-size components and depositional processes in a modern clastic lake. Sedimentol 59(3):1050–1062

    Article  Google Scholar 

  • Xiao J, Fan J, Zhou L, Zhai D, Wen R, Qin X (2013) Amodel for linking grain-size component to lake level status of a modern clastic lake. J Asian Earth Sci 69:149–158

    Article  Google Scholar 

  • Xiao HF, Zhang S, Guan Y, Lu S, Gao Y, Sun Q, Xu H, Li M, Wang J, Pei X (2014) Assessment of potential risks associated with heavy metal contamination in sediment in Aobaopao Lake, China, determined from sediment cores. Ecotoxicol 23:527–537. https://doi.org/10.1007/s10646-014-1220-z

    Article  Google Scholar 

  • Xu Y, Wu Y, Han J, Li P (2017) The current status of heavy metal in lake sediments from China: pollution and ecological risk assessment. Ecol evol 7(14):5454–5466

    Article  Google Scholar 

  • Yao ZG, Bao ZY, Gao P (2006) Environmental assessments of trace metals in sediments from Dongting Lake, Central China. J China Univ Geosci 17:310–319. https://doi.org/10.1016/S1002-0705(07)60004-1

    Article  Google Scholar 

  • Yu ZT, Wang XJ, Zhang EL, Zhao CY, Liu XQ (2015) Spatial distribution and sources of organic carbon in the surface sediment of Bosten Lake, China. Biogeosciences 12(22):6605–6615

    Article  Google Scholar 

  • Zhang C (2006) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environment Poll 142:501–511. https://doi.org/10.1016/j.envpol.2005.10.028

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers for their constructive comments that helped in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayees Ahmad Shah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Amjad Kallel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, R.A., Achyuthan, H., Krishnan, H. et al. Heavy metal concentration and ecological risk assessment in surface sediments of Dal Lake, Kashmir Valley, Western Himalaya. Arab J Geosci 14, 187 (2021). https://doi.org/10.1007/s12517-021-06504-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-06504-w

Keywords

Navigation