Skip to main content
Log in

Hot ductility behavior of a Fe-0.3C-9Mn-2Al medium Mn steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The hot ductility of a Fe-0.3C-9Mn-2Al medium Mn steel was investigated using a Gleeble3800 thermo-mechanical simulator. Hot tensile tests were conducted at different temperatures (600–1300°C) under a constant strain rate of 4 × 10−3 s−1. The fracture behavior and mechanism of hot ductility evolution were discussed. Results showed that the hot ductility decreased as the temperature was decreased from 1000°C. The reduction of area (RA) decreased rapidly in the specimens tested below 700°C, whereas that in the specimen tested at 650°C was lower than 65%. Mixed brittle-ductile fracture feature is reflected by the coexistence of cleavage step, intergranular facet, and dimple at the surface. The fracture belonged to ductile failure in the specimens tested between 720–1000°C. Large and deep dimples could delay crack propagation. The change in average width of the dimples was in positive proportion with the change in RA. The wide austenite-ferrite inter-critical temperature range was crucial for the hot ductility of medium Mn steel. The formation of ferrite film on austenite grain boundaries led to strain concentration. Yield point elongation occurred at the austenite-ferrite intercritical temperature range during the hot tensile test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.B. He, B. Hu, H.W. Yen, G.J. Cheng, Z.K. Wang, H.W. Luo, and M.X. Huang, High dislocation density-induced large ductility in deformed and partitioned steels, Science, 357(2017), No. 6355, p. 1029.

    Article  CAS  Google Scholar 

  2. P.K. Xia, F. Vercruysse, R. Petrov, I. Sabirov, M. Castillo-Rodríguez, and P. Verleysen, High strain rate tensile behavior of a quenching and partitioning (Q&P) Fe-0.25C-1.5Si-3.0Mn steel, Mater. Sci. Eng. A, 745(2019), p. 53.

    Article  CAS  Google Scholar 

  3. A. Grajcar, R. Kuziak, and W. Zalecki, Third generation of AHSS with increased fraction of retained austenite for the automotive industry, Arch. Civ. Mech. Eng., 12(2012), No. 3, p. 334.

    Article  Google Scholar 

  4. K. Lu, The future of metals, Science, 328(2010), No. 5976, p. 319.

    Article  CAS  Google Scholar 

  5. J.W. Zhao and Z.Y. Jiang, Thermomechanical processing of advanced high strength steels, Prog. Mater Sci., 94(2018), p. 174.

    Article  CAS  Google Scholar 

  6. P. Lan, H.Y. Tang, and J.Q. Zhang, Hot ductility of high alloy Fe-Mn-C austenite TWIP steel, Mater. Sci. Eng. A, 660(2016), p. 127.

    Article  CAS  Google Scholar 

  7. B.H. Chen and H. Yu, Hot ductility behavior of V-N and V-Nb microalloyed steels, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 525.

    Article  Google Scholar 

  8. C.H. Lee, J.Y. Park, J.H. Chung, D.B. Park, J.Y. Jang, S. Huh, S.J. Kim, J.Y. Kang, J. Moon, and T.H. Lee, Hot ductility of medium carbon steel with vanadium, Mater. Sci. Eng. A, 651(2016), p. 192.

    Article  CAS  Google Scholar 

  9. I. Mejía, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera, Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron, Mater. Sci. Eng. A, 528(2011), No. 13–14, p. 4468.

    Article  Google Scholar 

  10. B. Hu, H.W. Luo, F. Yang, and H. Dong, Recent progress in medium-Mn steels made with new designing strategies, a review, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1457.

    Article  CAS  Google Scholar 

  11. J.T. Benzing, A. Kwiatkowski Da Silva, L. Morsdorf, J. Bentley, D. Ponge, A. Dutta, J. Han, J.R. McBride, B. Van Leer, B. Gault, D. Raabe, and J.E. Wittig, Multi-scale characterization of austenite reversion and martensite recovery in a cold-rolled medium-Mn steel, Acta Mater., 166(2019), p. 512.

    Article  CAS  Google Scholar 

  12. D.W. Suh and S.J. Kim, Medium Mn transformation-induced plasticity steels: Recent progress and challenges, Srripta Mater., 126(2017), p. 63.

    Article  CAS  Google Scholar 

  13. K. Steineder, D. Krizan, R. Schneider, C. Béal, and C. Sommitsch, On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels, Acta Mater., 139(2017), p. 39.

    Article  CAS  Google Scholar 

  14. J. Hu, J.M. Zhang, G.S. Sun, L.X. Du, Y. Liu, Y. Dong, and R.D.K. Misra, High strength and ductility combination in nano-/ultrafine-grained medium-Mn steel by tuning the stability of reverted austenite involving intercritical annealing, J. Mater. Sci., 54(2019), No. 8, p. 6565.

    Article  CAS  Google Scholar 

  15. M.H. Kang, J.S. Lee, Y.M. Koo, S.J. Kim, and N.H. Heo, Correlation between MnS precipitation, sulfur segregation kinetics, and hot ductility in C-Mn steel, Metall. Mater. Trans. A, 45(2014), No. 12, p. 5295.

    Article  CAS  Google Scholar 

  16. Y. Ma, W.W. Song, S.X. Zhou, A. Schwedt, and W. Bleck, Influence of intercritical annealing temperature on microstructure and mechanical properties of a cold-rolled medium-Mn steel, Metals, 8(2018), No. 5, p. 357.

    Article  Google Scholar 

  17. N. Nakada, K. Mizutani, T. Tsuchiyama, and S. Takaki, Difference in transformation behaviour between ferrite and austenite formations in medium manganese steel, Acta Mater., 65(2014), p. 251.

    Article  CAS  Google Scholar 

  18. J.Y. Li and G.G. Cheng, Hot ductility of Cr15Mn7Ni4N austenitic stainless steel, J. Mater. Res. Technol., 9(2020), No. 1, p. 52.

    Article  Google Scholar 

  19. B. G. Thomas, J.K. Brimacombe, and I. V. Samarasekera, The formation of panel cracks in steel ingots: A state-of-the-art review-I. hot ductility of steel, ISS Trans., 7(1986), p. 7.

    CAS  Google Scholar 

  20. S.C. Seo, K.S. Son, S.K. Lee, I. Kim, T.J. Lee, C. Yim, and D. Kim, Variation of hot ductility behavior in as-cast and remelted steel slab, Met. Mater. Int., 14(2008), No. 5, p. 559.

    Article  CAS  Google Scholar 

  21. H.B. Liu, J.H. Liu, B.W. Wu, Y.Z. Shen, Y. He, H. Ding, and X.F. Su, Effect of Mn and Al contents on hot ductility of high alloy Fe-xMn-C-yAl austenite TWIP steels, Mater. Sci. Eng. A, 708(2017), p. 360.

    Article  CAS  Google Scholar 

  22. G. Sahoo, B. Singh, and A. Saxena, Effect of strain rate, soaking time and alloying elements on hot ductility and hot shortness of low alloy steels, Mater. Sci. Eng. A, 718(2018), p. 292.

    Article  CAS  Google Scholar 

  23. Z. Lu, H.T. Zhang, and B.R. Wu, Effect of niobium on hot ductility of low C-Mn-steel under continuous casting simulation conditions, Steel Res. Int., 61(1990), No. 12, p. 620.

    Article  CAS  Google Scholar 

  24. D.P. Yang, D. Wu, and H.L. Yi, Reverse transformation from martensite into austenite in a medium-Mn steel, Scripta Mater., 161(2019), p. 1.

    Article  CAS  Google Scholar 

  25. A.S. Hamada and L.P. Karjalainen, Hot ductility behaviour of high-Mn TWIP steels, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1819.

    Article  Google Scholar 

  26. J.R. Li, T. He, L.J. Cheng, P.F. Zhang, and L.W. Wang, Effect of precipitates on the hot embrittlement of 11Cr-3Co-3W martensitic heat resistant steel for turbine high temperature stage blades in ultra-supercritical power plants, Mater. Sci. Eng. A, 763(2019), p. 138187.

    Article  CAS  Google Scholar 

  27. T. Tu, X.H. Chen, J. Chen, C.Y. Zhao, and F.S. Pan, A high-ductility Mg-Zn-Ca magnesium alloy, Acta Metall. Sinica Engl. Lett., 32(2019), No. 1, p. 23.

    Article  CAS  Google Scholar 

  28. P.Y. Wen, J.S. Han, H.W. Luo, and X.P. Mao, Effect of flash processing on recrystallization behavior and mechanical performance of cold-rolled IF steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1234.

    Article  CAS  Google Scholar 

  29. H.W. Luo, H. Dong, and M.X. Huang, Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels, Mater. Des., 83(2015), p. 42.

    Article  CAS  Google Scholar 

  30. B.C. De Cooman, S.J. Lee, and S. Shin, E.J. Seo, J.G. Speer, Combined intercritical annealing and Q&P processing of medium Mn steel, Metall. Mater. Trans. A, 48(2017), No. 1, p. 39.

    Article  CAS  Google Scholar 

  31. R. Schwab and V. Ruff, On the nature of the yield point phenomenon, Acta. Mater., 61(2013), No. 5, p. 1798.

    Article  CAS  Google Scholar 

  32. J.H. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel, Acta Mater., 78(2014), p. 369.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities, China (Nos. FRF-TP-18-039A1 and FRF-IDRY-19-013) and the China Postdoctoral Science Foundation (No. 2019M650482).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-jin Wang or Ren-bo Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yj., Zhao, S., Song, Rb. et al. Hot ductility behavior of a Fe-0.3C-9Mn-2Al medium Mn steel. Int J Miner Metall Mater 28, 422–429 (2021). https://doi.org/10.1007/s12613-020-2206-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2206-x

Keywords

Navigation