Skip to main content
Log in

Intrinsic Sub-Nanocrystalline Silicon Thin Films: Active Layer for Solar Cells

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The study presents the typical aspects of silicon thin films in terms of growth under variation of applied power using Radio frequency Plasma Enhanced Chemical Vapor Deposition technique (RF-PECVD). The corresponding material found to maintain the typical properties of amorphous nature without compensating the structural modification in terms of crystallinity and has been defined as a material having the “sub-nanocrystalline phase”. Characterizations like, UV-Visible spectroscopy, Photoluminescence and Temperature dependent conductivity was used to effectively map the structural details along with electrical and optical properties. The optical bandgap of the films found to be vary from 1.77 eV to 1.99 eV with typical photoresponse variations in the range 103 to 101. At 30 W applied power, the transition regime observed with the formation of sub-nanocrystallites. The analysis of such phase reveals the superior optoelectronic properties. This article suggests the suitability of sub-nanocrystalline silicon thin films to replace hydrogenated amorphous silicon in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chopra KL, Paulson PD, Dutta V (2004). Prog Photovolt Res Appl 12:69

    Article  CAS  Google Scholar 

  2. Guha S (1998). Renewable Energy 15:189

    Article  CAS  Google Scholar 

  3. R.A. Street. Cambridge University press (2005)

  4. Bryon L. Stafford. No. CONF-91022. American Inst. of Physics, New York, NY (United States) (1991)

  5. Guha S, Yang J, Czubatyj W, Hudgens SJ, Hack M (1983). Appl Phys Lett 42:588

    Article  CAS  Google Scholar 

  6. H. Fritzsche and AZ Tucson. In Materials Research Society Symposium Proceedings, Materials Research Society, 467(1997) 19–30

  7. M. Stutzmann. In MRS Proceedings Cambridge University Press 467 (1997) 37

  8. Fritzsche H (1995). Solid State Communications 94:953

    Article  CAS  Google Scholar 

  9. Hazra S, Ray S (1998). Solid State Commun 109:125

    Article  Google Scholar 

  10. Mukhopadhyay S, Chowdhury A, Ray S (2008). Thin Solid Films 516:6824–6828

    Article  CAS  Google Scholar 

  11. Tan H, Babal P, Zeman M, Smets AH (2015). Sol Energy Mater Sol Cells 132:597

    Article  CAS  Google Scholar 

  12. Shah AV, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U (2003). Sol Energy Mater Sol Cells 78:469

    Article  CAS  Google Scholar 

  13. C. Ballif, J. Bailat, D. Dominé, J. Steinhauser, S. Faÿ, M. Python and L. Feitknecht. PV-lab-CONF-2006-003 (2006)

  14. Sharma M, Juneja S, Sudhakar S, Chaudhary D, Kumar S (2016). Mater Sci Semicond Process 41:43

    Article  Google Scholar 

  15. V.M. Agranovich and D. Taylor. Elsevier, 30 (2001)

  16. Kumar S, Dixit PN, Rauthan CMS, Parashar A, Gope J (2008). J Phys Condens Matter 335215:20

    Google Scholar 

  17. Das D, Bhattacharya K (2006). Journal of Applied Physics 103701:100

    Google Scholar 

  18. Vasiliev I, Öğüt S, Chelikowsky JR (2001). Phys Rev Lett 1813:86

    Google Scholar 

  19. Brus LE (1984). The Journal of Chemical Physics 4403:80

    Google Scholar 

  20. Canham LT (1990). Appl Phys Lett 1046:57

    Google Scholar 

  21. Liao XB, Kong GL, Yang XR, Wang PD, Chao YQ, Chen ZM, Liu CL (1981). Le Journal de Physique Colloques C4-663:42

    Google Scholar 

  22. T.H. Gfroerer, Encyclopedia of analytical chemistry: applications, theory and instrumentation (2006)

  23. K.E. Drexler, Anchor book publishers, New York, (1986)

  24. Hu ZJ, Zhang WG, Hüttinger KJ, Reznik B, Gerthsen D (2003). Carbon 41:749

    Article  CAS  Google Scholar 

  25. M. Thorpe, and M. Chubynsky, Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824. 9(2012) 61

  26. Smets AHM, Kessels WMM, Van de Sanden MCM (2003). App Phys Letts 82:1547

    Article  CAS  Google Scholar 

  27. Cheng IC, Wagner S (2003) IEEE proceedings-circuits. Devices and Systems 150:339

    Article  Google Scholar 

  28. Nguyen HH, Nguyen VD, Trinh TT, Jang K, Baek K, Raja J, Yi J (2011). J Electrochem Soc 158:H1077

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, CSIR National Physical Laboratory, New Delhi (India) for his kind support. We are also grateful to Dr. Bipin Gupta from CSIR-NPL for availing PL characterization facility. One of the authors (MS) would like to acknowledge Science and Engineering Research Board (SERB), Govt. Of India for providing National Post-Doc Fellowship (NPDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Chaudhary, D., Sudhakar, S. et al. Intrinsic Sub-Nanocrystalline Silicon Thin Films: Active Layer for Solar Cells. Silicon 13, 1–7 (2021). https://doi.org/10.1007/s12633-020-00403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00403-7

Keywords

Navigation