Skip to main content

Advertisement

Log in

Regulation of mGluR1 on the Expression of PKC and NMDAR in Aluminum-Exposed PC12 Cells

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Aluminum demonstrates clear neurotoxicity and can cause Alzheimer’s disease (AD)-like symptoms, including cognitive impairment. One toxic effect of aluminum is a decrease in synaptic plasticity, but the specific mechanism remains unclear. In this study, PC12 cells were treated with Al(mal)3 to construct a toxic cell model. (S)-3,5-Dihydroxyphenylglycine (DHPG), α-methyl-4-carboxyphenylglycine (MCPG), and mGluR1-siRNA were used to interfere with the expression of metabotropic glutamate receptor subtype 1 (mGluR1). Polymerase chain reaction and western blotting were used to investigate the expression of mGluR1, protein kinase C (PKC), and N-methyl-D-aspartate receptor (NMDAR) subunits. ELISA was used to detect PKC enzyme activity. In PC12 cells, mRNA and protein expressions of PKC and NMDAR subunits were inhibited by Al(mal)3. Aluminum may further regulate the expression of NMDAR1 and NMDAR2B through mGluR1 to regulate PKC enzyme activity, thereby affecting learning and memory functions. Furthermore, the results implied that the mGluR1-PKC-NMDAR signaling pathway may predominately involve positive regulation. These findings provide new targets for studying the neurotoxic mechanism of aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Al(mal)3 :

Aluminum maltol

mGluR1:

Metabolic glutamate receptor 1

PKC:

Protein kinase C

NMDAR:

N-methyl-D-aspartic acid receptor

References

  • Alshuaib WB, Cherian SP, Hasan MY, Fahim MA (2003) Drug effects on calcium homeostasis in mouse CA1 hippocampal neurons. Int J Neurosci 113:1317–1332

    Article  PubMed  Google Scholar 

  • Becaria A, Campbell A, Bondy SC (2002) Aluminum as a toxicant. Toxicol Ind Health 18:309–320

    Article  CAS  PubMed  Google Scholar 

  • Bondy SC (2010) The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology 31:575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell A, Bondy SC (2000) Aluminum induced oxidative events and its relation to inflammation: a role for the metal in Alzheimer's disease. Cell Mol Biol (Noisy-le-Grand, France) 46:721–730

  • Cheng D, Zhang X, Tang J, Kong Y, Wang X, Wang S (2019) Chlorogenic acid protects against aluminum toxicity via MAPK/Akt signaling pathway in murine RAW264.7 macrophages. J Inorg Biochem 190:113–120

    Article  CAS  PubMed  Google Scholar 

  • Colgan LA, Hu M, Misler JA, Parra-Bueno P, Moran CM, Leitges M, Yasuda R (2018) PKCα integrates spatiotemporally distinct Ca(2+) and autocrine BDNF signaling to facilitate synaptic plasticity. Nat Neurosci 21:1027–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collingridge GL, Randall AD, Davies CH, Alford S (1992) The synaptic activation of NMDA receptors and Ca2+ signalling in neurons. Ciba Found Symp 164:162–171; discussion 172–165

  • Dabeka R, Fouquet A, Belisle S, Turcotte S (2011) Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:744–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divine KK, Lewis JL, Grant PG, Bench G (1999) Quantitative particle-induced X-ray emission imaging of rat olfactory epithelium applied to the permeability of rat epithelium to inhaled aluminum. Chem Res Toxicol 12:575–581

    Article  CAS  PubMed  Google Scholar 

  • Exley C (2013) Human exposure to aluminium. Environ Sci Process Impacts 15:1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Aguinaga D, Reyes I, Canela EI, Lillo J, Tarutani A, Hasegawa M, Del Ser-Badia A, Del Rio JA, Kreutz MR, Saura CA, Navarro G (2018) N-Methyl-D-aspartate receptor link to the MAP kinase pathway in cortical and hippocampal neurons and microglia is dependent on calcium sensors and is blocked by α-synuclein, Tau, and phospho-Tau in non-transgenic and transgenic APP(Sw, Ind) mice. Front Mol Neurosci 11:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabra BH, Kessler FK, Ritter JK, Dewey WL, Smith FL (2007) Decrease in N-methyl-D-aspartic acid receptor-NR2B subunit levels by intrathecal short-hairpin RNA blocks group I metabotropic glutamate receptor-mediated hyperalgesia. J Pharmacol Exp Ther 322:186–194

    Article  CAS  PubMed  Google Scholar 

  • Gubellini P, Saulle E, Centonze D, Costa C, Tropepi D, Bernardi G, Conquet F, Calabresi P (2003) Corticostriatal LTP requires combined mGluR1 and mGluR5 activation. Neuropharmacology 44:8–16

    Article  CAS  PubMed  Google Scholar 

  • He SC, Qiao N, Sheng W (2003) Neurobehavioral, autonomic nervous function and lymphocyte subsets among aluminum electrolytic workers. Int J Immunopathol Pharmacol 16:139–144

    Article  CAS  PubMed  Google Scholar 

  • Horak M, Petralia RS, Kaniakova M, Sans N (2014) ER to synapse trafficking of NMDA receptors. Front Cell Neurosci 8:394

    Article  PubMed  PubMed Central  Google Scholar 

  • Jinzhu Y, Qinli Z, Jin Y, Pan K, Jianjun H, Qiao N (2015) Aluminum and benzo[a]pyrene co-operate to induce neuronal apoptosis in vitro. J Toxicol Sci 40:365–373

    Article  PubMed  Google Scholar 

  • Jung IS, Kim HJ, Noh R, Kim SC, Kim CW (2014) Effects of extremely low frequency magnetic fields on NGF induced neuronal differentiation of PC12 cells. Bioelectromagnetics 35:459–469

    Article  CAS  PubMed  Google Scholar 

  • Kakegawa W, Yuzaki M (2018) [Molecular mechanisms for learning and memory: what happens at the synapses?]. Brain and nerve = Shinkei kenkyu no shinpo 70:677–687

  • Kaneko N, Yasui H, Takada J, Suzuki K, Sakurai H (2004) Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice. J Inorg Biochem 98:2022–2031

    Article  CAS  PubMed  Google Scholar 

  • Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health Part B 10(Suppl 1):1–269

    Article  CAS  Google Scholar 

  • Krieger P, Hellgren-Kotaleski J, Kettunen P, El Manira AJ (2000) Interaction between metabotropic and ionotropic glutamate receptors regulates neuronal network activity. J Neurosci Off J Soc Neurosci 20:5382–5391

    Article  CAS  Google Scholar 

  • Levite M, Ganor Y (2008) Autoantibodies to glutamate receptors can damage the brain in epilepsy, systemic lupus erythematosus and encephalitis. Expert Rev Neurother 8:1141–1160

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ding JH, Hu G (2003) Group I mGluR ligands fail to affect 6-hydroxydopamine- induced death and glutamate release of PC12 cells. Acta Pharmacol Sin 24:641–645

    CAS  PubMed  Google Scholar 

  • Li HB, Jackson MF, Yang K, Trepanier C, Salter MW, Orser BA, Macdonald JF (2011) Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses. Hippocampus 21:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiat 69:754–761

    Article  CAS  PubMed  Google Scholar 

  • Maya S, Prakash T, Madhu KD, Goli D (2016) Multifaceted effects of aluminium in neurodegenerative diseases: a review. Biomedicine & pharmacotherapy = Biomedicine & pharmacotherapie 83:746–754

  • McDonald JW, Fix AS, Tizzano JP, Schoepp DD (1993) Seizures and brain injury in neonatal rats induced by 1S,3R-ACPD, a metabotropic glutamate receptor agonist. J Neurosci Off J Soc Neurosci 13:4445–4455

    Article  CAS  Google Scholar 

  • Meyer-Baron M, Schäper M, Knapp G, van Thriel C (2007) Occupational aluminum exposure: evidence in support of its neurobehavioral impact. Neurotoxicology 28:1068–1078

    Article  CAS  PubMed  Google Scholar 

  • Nday CM, Drever BD, Salifoglou T, Platt B (2010) Aluminium interferes with hippocampal calcium signaling in a species-specific manner. J Inorg Biochem 104:919–927

    Article  CAS  PubMed  Google Scholar 

  • Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor JJ, Rowan MJ, Anwyl R (1995) Tetanically induced LTP involves a similar increase in the AMPA and NMDA receptor components of the excitatory postsynaptic current: investigations of the involvement of mGlu receptors. J Neurosci Off J Soc Neurosci 15:2013–2020

    Article  CAS  Google Scholar 

  • Oshima E, Ishihara T, Yokota O, Nakashima-Yasuda H, Nagao S, Ikeda C, Naohara J, Terada S, Uchitomi Y (2013) Accelerated tau aggregation, apoptosis and neurological dysfunction caused by chronic oral administration of aluminum in a mouse model of tauopathies. Brain Pathol (Zurich, Switzerland) 23:633–644

    Article  CAS  Google Scholar 

  • Pan B, Li Y, Zhang J, Zhou Y, Li L, Xue X, Li H, Niu Q (2020) Role of mGluR 1 in synaptic plasticity impairment induced by maltolaluminium in rats. Environ Toxicol Pharmacol 78:103406

    Article  CAS  PubMed  Google Scholar 

  • Patten SA, Ali DW (2009) PKCgamma-induced trafficking of AMPA receptors in embryonic zebrafish depends on NSF and PICK1. Proc Natl Acad Sci USA 106:6796–6801

    Article  CAS  PubMed  Google Scholar 

  • Paz LNF, Moura LM, Feio DCA, Cardoso MSG, Ximenes WLO, Montenegro RC, Alves APN, Burbano RR, Lima PDL (2017) Evaluation of in vivo and in vitro toxicological and genotoxic potential of aluminum chloride. Chemosphere 175:130–137

    Article  CAS  PubMed  Google Scholar 

  • Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicology 23:761–774

    Article  CAS  PubMed  Google Scholar 

  • Pomierny-Chamioło L, Poleszak E, Pilc A, Nowak G (2010) NMDA but not AMPA glutamatergic receptors are involved in the antidepressant-like activity of MTEP during the forced swim test in mice. Pharmacological reports : PR 62:1186–1190

    Article  PubMed  Google Scholar 

  • Rao AM, Hatcher JF, Dempsey RJ (2000) Neuroprotection by group I metabotropic glutamate receptor antagonists in forebrain ischemia of gerbil. Neurosci Lett 293:1–4

    Article  CAS  PubMed  Google Scholar 

  • Rashedinia M, Saberzadeh J, KhosraviBakhtiari T, Hozhabri S, Arabsolghar R (2019) Glycyrrhizic acid ameliorates mitochondrial function and biogenesis against aluminum toxicity in PC12 cells. Neurotox Res 35:584–593

    Article  CAS  PubMed  Google Scholar 

  • Reiner A, Levitz J (2018) Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 98:1080–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren P, Li R, Yuan YZ, Lu XT, Niu Q (2017) [Influence of occupational aluminum exposure on cognitive function and glutamate receptor protein expression in workers]. Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases 35:85–90

  • Ribeiro FM, Vieira LB, Pires RG, Olmo RP, Ferguson SS (2017) Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 115:179–191

    Article  CAS  PubMed  Google Scholar 

  • Riedel G, Platt B, Micheau J (2003) Glutamate receptor function in learning and memory. Behav Brain Res 140:1–47

    Article  CAS  PubMed  Google Scholar 

  • Riihimäki V, Hänninen H, Akila R, Kovala T, Kuosma E, Paakkulainen H, Valkonen S, Engström B (2000) Body burden of aluminum in relation to central nervous system function among metal inert-gas welders. Scand J Work Environ Health 26:118–130

    Article  PubMed  Google Scholar 

  • Sharma DR, Wani WY, Sunkaria A, Kandimalla RJ, Sharma RK, Verma D, Bal A, Gill KD (2016) Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus. Neuroscience 324:163–176

    Article  CAS  PubMed  Google Scholar 

  • Skeberdis VA, Lan J, Opitz T, Zheng X, Bennett MV, Zukin RS (2001) mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology 40:856–865

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA, Skavicus S, Card J, Giulio RT, Seidler FJ (2017) In vitro models reveal differences in the developmental neurotoxicity of an environmental polycylic aromatic hydrocarbon mixture compared to benzo[a]pyrene: neuronotypic PC12 cells and embryonic neural stem cells. Toxicology 377:49–56

    Article  CAS  PubMed  Google Scholar 

  • Tüzmen MN, Yücel NC, Kalburcu T, Demiryas N (2015) Effects of curcumin and tannic acid on the aluminum- and lead-induced oxidative neurotoxicity and alterations in NMDA receptors. Toxicol Mech Methods 25:120–127

    Article  PubMed  Google Scholar 

  • Thompson KH, Barta CA, Orvig C (2006) Metal complexes of maltol and close analogues in medicinal inorganic chemistry. Chem Soc Rev 35:545–556

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Xing W, Zhao Y, Deng X (2010) Effects of chronic aluminum exposure on memory through multiple signal transduction pathways. Environ Toxicol Pharmacol 29:308–313

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Cao J, Zhou Y, Wang L, Zhu G (2018) GPR30 activation improves memory and facilitates DHPG-induced LTD in the hippocampal CA3 of middle-aged mice. Neurobiol Learn Mem 149:10–19

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang H, Pan B, Zhang S, Wang S, Niu Q (2018) Transcriptome-wide identification of differentially expressed genes and long non-coding RNAs in aluminum-treated rat hippocampus. Neurotox Res 34:220–232

    Article  CAS  PubMed  Google Scholar 

  • Yang HW, Hu XD, Zhang HM, Xin WJ, Li MT, Zhang T, Zhou LJ, Liu XG (2004) Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn. J Neurophysiol 91:1122–1133

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Trepanier C, Sidhu B, Xie YF, Li H, Lei G, Salter MW, Orser BA, Nakazawa T, Yamamoto T, Jackson MF, Macdonald JF (2012) Metaplasticity gated through differential regulation of GluN2A versus GluN2B receptors by Src family kinases. EMBO J. 31:805–816

    Article  CAS  PubMed  Google Scholar 

  • Yokel RA (2002) Brain uptake, retention, and efflux of aluminum and manganese. Environ Health Perspect 110(Suppl 5):699–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan CY, Hsu GS, Lee YJ (2011) Aluminum alters NMDA receptor 1A and 2A/B expression on neonatal hippocampal neurons in rats. J Biomed Sci 18:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yang X, Qin X, Niu Q (2016) Caspase-3 is involved in aluminum-induced impairment of long-term potentiation in rats through the Akt/GSK-3β pathway. Neurotox Res 29:484–494

    Article  PubMed  Google Scholar 

  • Zhao HH, Di J, Liu WS, Liu HL, Lai H, Lü YL (2013) Involvement of GSK3 and PP2A in ginsenoside Rb1’s attenuation of aluminum-induced tau hyperphosphorylation. Behav Brain Res 241:228–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank colleagues for their help and work on the research.

Funding

This work was supported by the National Natural Science Foundation of China [Nos. 81430078, 81872599].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Niu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Zhao, X., Li, H. et al. Regulation of mGluR1 on the Expression of PKC and NMDAR in Aluminum-Exposed PC12 Cells. Neurotox Res 39, 634–644 (2021). https://doi.org/10.1007/s12640-020-00319-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-020-00319-5

Keywords

Navigation