Skip to main content

Advertisement

Log in

Preparation of FTO/CU2O Electrode Protected by PEDOT:PSS and Its Better Performance in the Photoelectrocatalytic Reduction of CO2 to Methanol

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 08 February 2021

This article has been updated

Abstract

Copper(I) oxide (Cu2O) was electrochemically deposited on fluorine-doped tin oxide (FTO) glass electrode and covered with a thin layer of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The electrode was studied in the photoelectrocatalytic reduction of CO2. Methanol was obtained as the major product with a concentration of 460 μmol L−1 with a photoconversion yield of 12% after 60 min of reaction under the conditions of UV-Vis (125 W Hg high pressure lamp) and application of 0.0 V vs Ag/AgCl in 3.0 mol L−1 KCl in buffer sodium carbonate/sodium bicarbonate 0.1 mol L−1 saturated with CO2 gas. The PEDOT:PSS has led to a significant improvement in CO2 conversion due to rapid transfer of photogenerated holes. Consequently, the thin layer of PEDOT:PSS also reduces the photooxidation of Cu2O to CuO. The Cu2O/PEDOT:PSS photocatalytic system was found to have excellent photostability. Similar yield of alcohol was observed after reusing the catalyst six times.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. J. C. Colmenares and Y.-J. Xu, Heterogeneous photocatalysis: from fundamentals to green applications, 1o edition (Springer-Verlag Berlin Heidelberg, 2016)

  2. H. Xie, T. Wang, J. Liang, Q. Li, S. Sun, Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 21, 41–54 (2018)

    Google Scholar 

  3. T.T. Guaraldo, J.F. de Brito, D. Wood, M.V.B. Zanoni, A New Si/TiO2/Pt p-n junction semiconductor to demonstrate photoelectrochemical CO2 conversion. Electrochim. Acta 185, 117–124 (2015)

    CAS  Google Scholar 

  4. J. Bugayong and G. Griffin, MRS Proc. 1542, mrss13 (2013)

  5. K. Gao, K.R. McKinley, Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol. 6(1), 45–60 (1994)

    Google Scholar 

  6. D.R. Sauerbeck, Nutr. Cycl. Agroecosystems 60(1/3), 253–266 (2001)

    Google Scholar 

  7. M. S. Martin M. Halmann, Greenhouse gas carbon dioxide mitigation: science and technology: Martin M. Halmann, Meyer Steinberg: 9781566702843: Amazon.Com: Books, 1st ed. (CRC Press, 1998)

  8. R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.M. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6(20), 4073–4082 (2015)

    CAS  PubMed  Google Scholar 

  9. E. Szaniawska, K. Bienkowski, I.A. Rutkowska, P.J. Kulesza, R. Solarska, Enhanced photoelectrochemical CO2-reduction system based on mixed Cu2O – nonstoichiometric TiO2 photocathode. Catal. Today 300, 145–151 (2018)

    CAS  Google Scholar 

  10. M. Flores-Flores, E. Luévano-Hipólito, L.M. Torres-Martínez, T.O. Do, CO2 adsorption and photocatalytic reduction over Mg(OH)2/CuO/Cu2O under UV-Visible light to solar fuels. Mater. Chem. Phys. 227, 90–97 (2019)

    CAS  Google Scholar 

  11. M.E. Aguirre, R. Zhou, A.J. Eugene, M.I. Guzman, M.A. Grela, Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: protecting Cu2O from photocorrosion. Appl. Catal. B Environ. 217, 485–493 (2017)

    CAS  Google Scholar 

  12. X. An, K. Li, J. Tang, Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem 7(4), 1086–1093 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. K. Zhao, Y. Liu, X. Quan, S. Chen, H. Yu, CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl. Mater. Interfaces 9(6), 5302–5311 (2017)

    CAS  PubMed  Google Scholar 

  14. E. Szaniawska, I.A. Rutkowska, M. Frik, A. Wadas, E. Seta, A. Krogul-Sobczak, K. Rajeshwar, P.J. Kulesza, Reduction of carbon dioxide at copper(I) oxide photocathode activated and stabilized by over-coating with oligoaniline. Electrochim. Acta 265, 400–410 (2018)

    CAS  Google Scholar 

  15. J.F. De Brito, M.V.B. Zanoni, On the application of Ti/TiO 2 /CuO n-p junction semiconductor: a case study of electrolyte, temperature and potential influence on CO 2 reduction. Chem. Eng. J. 318, 264–271 (2017)

    Google Scholar 

  16. J.F. de Brito, A.R. Araujo, K. Rajeshwar, M.V.B. Zanoni, B. Zanoni, Photoelectrochemical reduction of CO2 on Cu/Cu2O films: product distribution and pH effects. Chem. Eng. J. 264, 302–309 (2015)

    Google Scholar 

  17. T. Kulandaivalu, S. Abdul Rashid, N. Sabli, T.L. Tan, Visible light assisted photocatalytic reduction of CO2 to ethane using CQDs/Cu2O nanocomposite photocatalyst. Diam. Relat. Mater. 91, 64–73 (2019)

    CAS  Google Scholar 

  18. B. Li, W. Niu, Y. Cheng, J. Gu, P. Ning, Q. Guan, Preparation of Cu2O modified TiO2 nanopowder and its application to the visible light photoelectrocatalytic reduction of CO2 to CH3OH. Chem. Phys. Lett. 700, 57–63 (2018)

    CAS  Google Scholar 

  19. N. Pugazhenthiran, K. Kaviyarasan, T. Sivasankar, A. Emeline, D. Bahnemann, R.V. Mangalaraja, S. Anandan, Sonochemical synthesis of porous NiTiO3 nanorods for photocatalytic degradation of ceftiofur sodium. Ultrason. Sonochem. 35(Pt A), 342–350 (2017)

    CAS  PubMed  Google Scholar 

  20. A. M. Qadir and I. Y. Erdogan, Int. J. Hydrogen energy 1 (2019)

  21. M. Iqbal, Y. Wang, H. Hu, M. He, A. Hassan Shah, L. Lin, P. Li, K. Shao, A. Reda Woldu, T. He, Cu2O-tipped ZnO nanorods with enhanced photoelectrochemical performance for CO2 photoreduction. Appl. Surf. Sci. 443, 209–216 (2018)

    CAS  Google Scholar 

  22. J. Ke, C. Zhao, H. Zhou, X. Duan, S. Wang, Enhanced solar light driven activity of p-n heterojunction for water oxidation induced by deposition of Cu2O on Bi2O3 microplates. Sustain. Mater. Technol. 19, e00088 (2019)

    CAS  Google Scholar 

  23. Y. Luo, Q. Huang, B. Li, L. Dong, M. Fan, F. Zhang, and Guangxi, Appl. Surf. Sci. J. 357, 1072 (2015)

  24. Q. Hu, F. Wang, Z. Fang, X. Liu, Cu2O–Au nanocomposites for enzyme-free glucose sensing with enhanced performances. Colloids Surfaces B Biointerfaces 95, 279–283 (2012)

    CAS  PubMed  Google Scholar 

  25. J.W. Hou, X.C. Yang, M.M. Cui, M. Huang, Q.Y. Wang, Synthesis and optical property of one-dimensional Ag–Cu2O heterojunctions. Mater. Lett. 74, 159–162 (2012)

    CAS  Google Scholar 

  26. D. Zhang, B. Hu, D. Guan, Z. Luo, Essential roles of defects in pure graphene/Cu2O photocatalyst. Catal. Commun. 76, 7–12 (2016)

    CAS  Google Scholar 

  27. K. B. and P. J. K. Ewelina Seta , Weronika A. Lotowska , Iwona A. Rutkowska , Anna Wadas , Adrianna Raczkowska , Marta Nieckarz, Aust. J. Chem. 69, 411 (2016)

  28. A.N. Grace, S.Y. Choi, M. Vinoba, M. Bhagiyalakshmi, D.H. Chu, Y. Yoon, S.C. Nam, S.K. Jeong, Electrochemical reduction of carbon dioxide at low overpotential on a polyaniline/Cu2O nanocomposite based electrode. Appl. Energy 120, 85–94 (2014)

    CAS  Google Scholar 

  29. C. Janáky, K. Rajeshwar, The role of (photo)electrochemistry in the rational design of hybrid conducting polymer/semiconductor assemblies: from fundamental concepts to practical applications. Prog. Polym. Sci. 43, 96–135 (2015)

    Google Scholar 

  30. W. Dai, H. Xu, J. Yu, X. Hu, X. Luo, X. Tu, L. Yang, Photocatalytic reduction of CO 2 into methanol and ethanol over conducting polymers modified Bi 2 WO 6 microspheres under visible light. Appl. Surf. Sci. 356, 173–180 (2015)

    CAS  Google Scholar 

  31. S. Zhang, Q. Chen, Y. Wang, L. Guo, Synthesis and photoactivity of CdS photocatalysts modified by polypyrrole. Int. J. Hydrog. Energy 37(17), 13030–13036 (2012)

    CAS  Google Scholar 

  32. B.L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12(7), 481–494 (2000)

    CAS  Google Scholar 

  33. S.H. Kim, J.H. Kim, H.J. Choi, J. Park, Pickering emulsion polymerized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polystyrene composite particles and their electric stimuli-response. RSC Adv. 5(88), 72387–72393 (2015)

    CAS  Google Scholar 

  34. K. Trzciński, M. Szkoda, K. Siuzdak, M. Sawczak, A. Lisowska-Oleksiak, Enhanced photoelectrochemical performance of inorganic–organic hybrid consisting of BiVO4 and PEDOT:PSS. Appl. Surf. Sci. 388, 753–761 (2016)

    Google Scholar 

  35. D. Mardiansyah, T. Badloe, K. Triyana, M.Q. Mehmood, N. Raeis-Hosseini, Y. Lee, H. Sabarman, K. Kim, J. Rho, Sci. Rep. 8, 1 (2018)

    CAS  Google Scholar 

  36. Q. Sun, S. Zhou, X. Shi, X. Wang, L. Gao, Z. Li, Y. Hao, Efficiency enhancement of perovskite solar cells via electrospun CuO nanowires as buffer layers. ACS Appl. Mater. Interfaces 10(13), 11289–11296 (2018)

    CAS  PubMed  Google Scholar 

  37. J.C. Cardoso, C.A. Grimes, X. Feng, X. Zhang, S. Komarneni, M.V.B. Zanoni, N. Bao, Fabrication of coaxial TiO2/Sb2S3 nanowire hybrids for efficient nanostructured organic–inorganic thin film photovoltaics. Chem. Commun. 48(22), 2818 (2012)

    CAS  Google Scholar 

  38. J.Y. Hong, S. Huh, Hollow S-doped carbon spheres from spherical CT/PEDOT composite particles and their CO2 sorption properties. J. Colloid Interface Sci. 436, 77–82 (2014)

    CAS  PubMed  Google Scholar 

  39. S. Stülp, J.C. Cardoso, J.F. de Brito, J.B.S. Flor, R.C.G. Frem, F.A. Sayão, M.V.B. Zanoni, An artificial photosynthesis system based on Ti/TiO2 coated with Cu(II) aspirinate complex for CO2 reduction to methanol. Electrocatalysis 8(3), 279–287 (2017)

    Google Scholar 

  40. J.C. Cardoso, S. Stulp, J.F. de Brito, J.B.S. Flor, R.C.G. Frem, M.V.B. Zanoni, MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Appl. Catal. B Environ. 225, 563–573 (2018)

    CAS  Google Scholar 

  41. G. Herzberg, Molecular spectra and molecular structure. Vol.2: Infrared and Raman Spectra of Polyatomic Molecules, 18th ed. (Krieger Pub Co, PRINCETON, 1945)

  42. A. Lamberti, M. Destro, S. Bianco, M. Quaglio, A. Chiodoni, C.F. Pirri, C. Gerbaldi, Facile fabrication of cuprous oxide nanocomposite anode films for flexible Li-ion batteries via thermal oxidation. Electrochim. Acta 86, 323–329 (2012)

    CAS  Google Scholar 

  43. W. C. J. Ho, Q. Tay, H. Qi, Z. Huang, J. Li, and Z. Chen, Molecules 22, (2017)

    Google Scholar 

  44. V. V. Kislyuk, M. I. Fedorchenko, P. S. Smertenko, O. P. Dimitriev, and A. A. Pud, J. Phys. D. Appl. Phys. 43, 1 (210AD)

  45. H. Hashiba, S. Yotsuhashi, M. Deguchi, and Y. Yamada, ACS Comb. Sci. acscombsci.6b00021 (2016)

  46. D. Sebastián, A. Palella, V. Baglio, L. Spadaro, S. Siracusano, P. Negro, F. Niccoli, A.S. Aricò, CO 2 reduction to alcohols in a polymer electrolyte membrane co-electrolysis cell operating at low potentials. Electrochim. Acta 241, 28–40 (2017)

    Google Scholar 

  47. S. Stulp, J.C. Cardoso, J.F. de Brito, J.B.S. Flor, R.C.G. Frem, F.A. Sayão, M.V.B. Zanoni, An artificial photosynthesis system based on Ti/TiO2 coated with Cu(II) aspirinate complex for CO2 reduction to methanol. Electrocatalysis 8(3), 279–287 (2017)

    CAS  Google Scholar 

  48. J.C. Cardoso, S. Stulp, J.F. de Brito, J.B.S. Flor, R.C.G. Frem, M.V.B. Zanoni, MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Appl. Catal. B Environ. 225, 563–573 (2018)

    CAS  Google Scholar 

  49. M. Naoki Yoshihara, Arita, and M. Noda. Chem. Lett. 46, 125 (2017)

    Google Scholar 

  50. J.F. de Brito, F.F. Hudari, M.V.B. Zanoni, Photoelectrocatalytic performance of nanostructured p-n junction NtTiO2/NsCuO electrode in the selective conversion of CO2 to methanol at low bias potentials. J. CO2 Util. 24, 81–88 (2018)

    Google Scholar 

  51. G.G. Bessegato, T.T. Guaraldo, J.F. de Brito, M.F. Brugnera, M.V.B. Zanoni, Achievements and trends in photoelectrocatalysis: from environmental to energy applications. Electrocatalysis 6(5), 415–441 (2015)

    CAS  Google Scholar 

  52. J. Albo, A. Sáez, J. Solla-Gullón, V. Montiel, A. Irabien, Appl. Catal. B Environ. 176–177, 709 (2015)

    Google Scholar 

  53. J. Albo, A. Irabien, Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J. Catal. 343, 232–239 (2016)

    CAS  Google Scholar 

  54. Y. Yang, D. Xu, Q. Wu, P. Diao, Sci. Rep. 6, 1 (2016)

    Google Scholar 

Download references

Funding

The authors are grateful for the financial support provided by the Ministerio de Educación (MINEDU) of Peru through of the agreement 401-2017-MINEDU of Perú, the Brazilian funding agencies FAPESP (#2015/18109-4, #2017/12790-7, and #2014/50945-1 INCT-DATREM), CNPq (#409792/2018-7), and CAPES. We are also indebted to GFQM-IQ for the X-ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliano Carvalho Cardoso.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de la Cruz, P.T.S., Irikura, K., Lachgar, A. et al. Preparation of FTO/CU2O Electrode Protected by PEDOT:PSS and Its Better Performance in the Photoelectrocatalytic Reduction of CO2 to Methanol. Electrocatalysis 11, 546–554 (2020). https://doi.org/10.1007/s12678-020-00612-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00612-z

Keywords

Navigation