Skip to main content
Log in

Sorption-luminescence method for determination of cerium using Transcarpathian clinoptilolite

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Sorption-luminescent method for cerium determination based on natural Transcarpathian clinoptilolite without using of complex synthetic organic compounds and toxic solvents was proposed. Optimal luminophore preparation conditions are sorption of free Ce3+ ions by zeolite in the solution with pH 4.5. For luminescence measurements excitation by quanta with wavelength of 255 nm were used. Luminescence intensity at λ = 346 nm was selected as analytical parameter for a quantitative cerium determination. Features characteristic to Ce3+ and Ce4+ oxidation states were identified in XPS spectra from as-grown and annealed samples. Definable range of Ce(III) concentration with the detection limit of 5 ng mL–1 is within of 14–190 ng mL–1. The proposed method can be used for the cerium determination in the presence of many rare earths. Sorption-luminescent method can be applied for determination of trace cerium ions in synthetic water solutions containing rare earth elements of the cerium group. The proposed analytical method gave recoveries from 95 to 98.3% and relative standard deviation from 4.1% to 6.7% determination of cerium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asadollahzadeh M, Torkaman R, Torab-Mostaedi M (2020) Extraction and separation of rare earth elements by adsorption approaches : current status and future trends. Sep Purif Rev. https://doi.org/10.1080/15422119.2020.1792930

    Article  Google Scholar 

  • Bai Z, Fujii M, Imakita K, Hayashi S (2013) Green to red tunable upconversion fluorescence from Bi–Er–Yb codoped zeolites. Microporous Mesoporous Mater 173:43–46. https://doi.org/10.1016/j.micromeso.2013.02.014

    Article  CAS  Google Scholar 

  • Balaram V (2019) Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10:1285–1330. https://doi.org/10.1016/j.gsf.2018.12.005

    Article  CAS  Google Scholar 

  • Beltyukova SV, Balamtrarashvili GM (1995) Luminescence determination of europium microquantities after its preconcentration on polyurethane foam. Talanta 42:1833–1838

    Article  CAS  Google Scholar 

  • Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374. https://doi.org/10.1021/cr8003983

    Article  CAS  Google Scholar 

  • Burroughs P, Hamnett A, Orchard AF, Thornton G (1976) Sattellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. Dalton Trans 17:1686–1698. https://doi.org/10.1080/03067319.2019.1674846

    Article  CAS  Google Scholar 

  • Didukh-Shadrina SL, Buyko OV, Losev VN (2019) Solid-phase extraction and fluorimetric determination of Zn(II) in natural water using novel adsorbent based on silica modified with polyhexamethylene guanidine and Ferron. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2019.1674846

    Article  Google Scholar 

  • Dotsenko VP, Levshov SM, Berezovskaya IV, Stryganyuk GB, Voloshinovskii AS, Efryushina NP (2011) Luminescent properties of Eu2+ and Ce3+ ions in strontium litho-silicate Li2SrSiO4. J Lumin 131:310–315. https://doi.org/10.1016/j.jlumin.2010.10.021

    Article  CAS  Google Scholar 

  • Emsley J (1998) The elements 3-rd edition. Clarendon Press, Oxford

    Google Scholar 

  • Faghihian H, Amini MK, Nezamzadeh AR (2005) Cerium uptake by zeolite a synthesized from natural clinoptilolite tuffs. J Radioanal Nucl Chem 264(3):577–582. https://doi.org/10.1007/s10967-005-0756-z

    Article  CAS  Google Scholar 

  • Hazenkamp MF, Vander Veen AMH, Blasse G (1992) Hydrated rare-earth-metal Ion-exchanged Zeolite A: characterization by luminescence spectroscopy Part 1.—the Gd3+ Ion. J Chem Soc Faraday Trans 88(1):133–140

    Article  CAS  Google Scholar 

  • Hong SBJ (2001) Double 6-ring as a unique cation site for the Ce3+/Ce4+ redox couple in zeolites. Phys Chem B 105:11961–11963

    Article  CAS  Google Scholar 

  • Hosseini M, Ganjali MR, Veismohammadi B et al (2010) Determination of terbium in phosphate rock by Tb3+—selective fluorometric optode based on dansyl derivative as a neutral fluorogenic ionofore. Anal Chim Acta 664:172–177

    Article  CAS  Google Scholar 

  • Jüstel T, Wiechert DU, Lau C, Sendor D, Kynast U (2001) Optically functional zeolites evaluation of uvand vuv stimulated photoluminescence properties of Ce3+ and Tb3+-doped zeolite X. Adv Funct Mater 2:105–110

    Article  Google Scholar 

  • Leznina MM, Kynast UH (2005) NIR—and upconverted luminescence from rare-earth sodalites. Phys Solid State 47(8):1485–1488. https://doi.org/10.1134/1.2014497

    Article  CAS  Google Scholar 

  • Li H, Cheng W, Wang Yu, Liu B et al (2010) Surface modification and functionalization of microporous hybrid material for luminescence sensing. Chem Eur J 16(7):2125–2130. https://doi.org/10.1002/chem.200901687

    Article  CAS  Google Scholar 

  • Loginova EV, Dmitrenko SG, Runov VK, Jordanidy TG, Zolotov YuA (1995) Solid-state luminescent chromium (VI) sensor based on rhodamine dyes and polyurethane foams : sorption-fluorometric analysis. Zh Anal Khimii 50(4):423–426

    Google Scholar 

  • Mech A, Monguzzi A, Meinardi F, Mezyk J, Macchi G, Tubino R (2010) Sensitized NIR erbium (III) emission in confined geometries: a new strategy for light emitters in telecom applications. J Am Chem Soc 132:4574–4576. https://doi.org/10.1021/ja907927s

    Article  CAS  Google Scholar 

  • Meshkova SB, Topilova ZM, Gerasimenko GI et al (1993) Polymethyl–methacrylate as a sorbent for effective recovery of lanthanides from solutions and highly sensitive luminescence determination of europium and terbium in waters. Zh Anal Khim 48(1):65–72

    CAS  Google Scholar 

  • Meshkova SB, Topilova ZM, Nazarenko NA, Litvinenko AV, Efryushina NP (2004) Improving the selectivity of the luminescence determination of europium (III) with the use of a zirconium phosphate solid support. J Anal Chem 59(3):246–249

    Article  CAS  Google Scholar 

  • Meskova SB, Kiriyak AV, Topilova ZM, Levshov SV (2008) Ways of increasing the sensitivity of the luminescent determination of lanthanides with the use of their complex compounds. Kharkiv Univ Bull Chem Ser 16(39):59–75

    Google Scholar 

  • Poluektov NS, Kononenko LI, Efryushina NP, Bel’tyukova SV (1989) Spectrophotometric and luminescent methods for the determination of lanthanides. Naukova Dumka, Kyiv

    Google Scholar 

  • Rizkalla E N, Choppin G R (1991) Hydration and hydrolysis of lantahnides. Handbook of Physics and Chemistry of rare earths (Eds. KA Gschneidner Jr, L Eyring). Elsevier, Amsterdam 60: 183–196

  • Rocha J, Carlos LD (2003) Microporous materials containing lanthanide metals. Curr Opin Solid State Mater Sci 7:199–205. https://doi.org/10.1016/j.cossms.2003.10.003

    Article  CAS  Google Scholar 

  • Ronda CR (1995) Phosphors for lamps and displays: an applicational view. J Alloys Compounds 225:534–538

    Article  CAS  Google Scholar 

  • Sahan M, Kucuker MA, Demirel B, Kuchta K, Hursthouse A (2019) Determination of metal content of waste mobile phones and estimation of their recovery potential in Turkey. Int J Environ Res Public Health 16(887):14. https://doi.org/10.3390/ijerph16050887

    Article  CAS  Google Scholar 

  • Schlueter C, Gloskovskii A, Ederer K, Schostak I, Piec S, Sarkar I, Matveyev Y, Lömker P, Sing M, Claessen R, Wiemann C, Schneider CM, Medjanik K, Schönhense G, Amann P, Nilsson A, Drube W (2019) The new dedicated HAXPES beamline P22 at PETRAIII. 13th International Conference on Synchrotron Radiation Instrumentation, SRI2018, Taipei, Taiwan, AIP conference proceedings 2054(1): 040010 (6pp) https://doi.org/10.1063/1.5084611

  • Sims CM, Maier RA, Johnston-Peck AC, Gorham JM, Hackley VA, Nelson BC (2019) Approaches for the quantitative analysis of oxidation state in cerium oxide nanomaterials. Nanotechnology. https://doi.org/10.1088/1361-6528/aae364

    Article  Google Scholar 

  • Stashkiv O, Vasylechko V, Gryshchouk G, Patsay I (2019a) Solid phase extraction of trace amounts of praseodymium using transcarpathian clinoptilolite. Colloids Interfaces 3(1):27. https://doi.org/10.3390/colloids3010027

    Article  CAS  Google Scholar 

  • Stashkiv O, Vasylechko V, Patsay I, Gryshchouk G (2019b) Preconcentration and determination of the Yb(III) using transcarpathian clinoptilolite. Visnyk Lviv Univ Ser Khim 60(1):179–190. https://doi.org/10.30970/vch.6001.179

    Article  Google Scholar 

  • Stechynska E, Vasylechko V, Gryshchouk G, Patsay I (2020) Preconcentration of lutetium from aqueous solution by Transcarpathian clinoptilolite. Acta Chim Slov 67:105–112. https://doi.org/10.17344/acsi.2019.5233

    Article  CAS  Google Scholar 

  • Tan X, Ren X, Chen C, Wang X (2014) Analytical approaches to the speciation of lanthanides at solid-water interfaces. Trend Anal Chem 61:107–132. https://doi.org/10.1016/j.trac.2014.06.010

    Article  CAS  Google Scholar 

  • Tarasevich YuI, Polyakov VE, Penchev VZh (1991) Ion exchange qualities and structural features of clinoptilolites of various deposits. Khim Technol Vody 13:132–140

    CAS  Google Scholar 

  • Vasylechko VO, Lebedynets LO, Gryshchouk GV et al (1996) Adsorption of copper on Transcarpathian mordenite. Adsorpt Sci Technol 14(5):267–277

    Article  CAS  Google Scholar 

  • Vasylechko VO, Gryshchouk GV, Lebedynets LO et al (1999) Adsorption of copper on Transcarpathian clinoptilolite. Adsorpt Sci Technol 17:125–134

    Article  CAS  Google Scholar 

  • Vasylechko VO, Gryshchouk GV, Kuz’ma Yu B et al (2003) Adsorption of cadmium on asid-modified Thanscarpathian clinoptilolite. Microporous Mesoporous Mater 60:183–196. https://doi.org/10.1016/S1387-1811(03)00376-7

    Article  CAS  Google Scholar 

  • Vasylechko V, Gryshchouk G, Derev’yanko M et al (2008) Adsorption of europium on Transcarpathian clinoptilolite. Visnyk Lviv Univ Ser Khim 49:170–179

    Google Scholar 

  • Vasylechko V, Gryshchouk G, Mel’nyk A, Kalychak Ya (2011) Pre-concentration and determination of cerium using Transcarpathian clinoptilolite. NaUKMA Khim Nauky Technol 118:10–16

    Google Scholar 

  • Vasylechko VO, Gryshchouk GV, Zakordonskiy VP, Patsay IO, Len’ NN, Vyviurska OA (2013) Sorption of terbium on Transcarpathian clinoptilolite. Microporous Mesoporous Mater 167:155–161. https://doi.org/10.1016/j.micromeso.2012.08.021

    Article  CAS  Google Scholar 

  • Vasylechko V, Korpalo Ch, Gryshchouk G (2014) Sorption of Sc(III) on transcarpathian clinoptilolite. Visnyk Lviv Univ Ser Khim 55(1):266–274

    Google Scholar 

  • Vasylechko VO, Gryshchouk GV, Zakordonskiy VP et al (2017) Sorption-luminescence method for determination of terbium using Transcarpathian clinoptilolite. Talanta 174:486–492. https://doi.org/10.1016/j.talanta.2017.06.052

    Article  CAS  Google Scholar 

  • Vasylechko VO, Stechynska ET, Stashkiv OD, Gryshchouk GV, Patsay IO (2018) Sorption of neodymium and gadolinium on Transcarpathian clinoptilolite. Acta Phys Pol A 133(4):794–797. https://doi.org/10.12693/APhysPolA.133.794

    Article  CAS  Google Scholar 

  • Vasylechko VO, Gryshchouk GV, Kalychak Ya M, Vasylechko LO, Voloshinovskii AS, Vistovskyy VV, Tupys AM (2019) Sorption–luminescence method for determination of europium using acid-modified clinoptilolite. Appl Nanosci 9(5):1145–1153. https://doi.org/10.1007/s13204-018-0878-6

    Article  CAS  Google Scholar 

  • Wójcik G (2020) Sorption Behaviors of Light Lanthanides (III) (La(III), Ce(III), Pr(III), Nd(III)) and Cr(III) using nitrolite. Materials 13:2256. https://doi.org/10.3390/ma13102256

    Article  CAS  Google Scholar 

  • Zakordonskiy VP, Vasylechko VO, Staszczuk P, Gryshchouk GV (2004) Water thermodesorption and adsorption properties of the transcarpathian zeolites. Visnyk Lviv Univ Ser Khim 44:247–256

    Google Scholar 

  • Zhang H, Feng J, Zhu W, Liu C, Gu J (2000) Bacteriostatic effects of cerium-humic acid complex. Exp Study Biol Trace Element Res 73:29–36

    Article  CAS  Google Scholar 

  • Zhao F, Repo E, Meng Y, Wang X, Yin D, Sillanpää M (2016) An EDTA–cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. J Colloid Interface Sci 465:215–224. https://doi.org/10.1016/j.jciis.2015.11.069

    Article  CAS  Google Scholar 

  • Zolotov YuA, Tsyzin GI, Morosanova EI, Dmitrienko SG (2005) Sorption preconcentration of trace components for chemical analysis. Usp Khim 74(1):41–66

    Article  Google Scholar 

Download references

Funding

This work was partially funded by the Ministry of Education and Sciences of Ukraine (Grant KhA–87F, 2019–2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr O. Vasylechko.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasylechko, V.O., Sak, H.P., Gryshchouk, G.V. et al. Sorption-luminescence method for determination of cerium using Transcarpathian clinoptilolite. Appl Nanosci 12, 543–551 (2022). https://doi.org/10.1007/s13204-021-01719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01719-5

Keywords

Navigation