Skip to main content
Log in

Integrated Roles of MoS2 Nanosheets for Water Treatment and Polymer Flame Retardant

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Layered MoS2 nanosheets have been widely investigated for wastewater treatment or polymer flame retardant alone, while few reports concern about their integrated utilization within the two fields. Herein, the authors creatively explored the multiple roles of MoS2 nanosheets for simultaneous water treatment and polymers flame retardant. MoS2 nanosheets were firstly employed as adsorbents for heavy metals removal and organics elimination in wastewater. The adsorption capacities of MoS2 for methylene blue (MB) and methyl orange (MO), Co2+, Ni2+, were found 181.8, 102.1, 61.7 and 51.8 mg/g, separately, due to the chemical and electrostatic interactions. Then the MoS2 nanosheets after water treatment (MoS2−x) were blended into polystyrene (PS) to study their flame-retardant properties and integrated utilization explorations. Results based on thermal stability, smoke suppression and heat resistance revealed that MoS2−x/PS composites displayed slower heat release rate (HRR), smaller smoke production rate (SPR) and lower CO production rate (COP) but higher T−10% than that of pristine PS, demonstrating the excellent flame-retardant efficiency of MoS2−x. Mechanisms for the great promotion in flame-retardant properties were found mainly resulted from nano-barrier and block wall effect of MoS2−x. Meanwhile, the rapid formation of char residue during the combustion also contributed to the improvement. Investigations in the present work implied the MoS2 nanosheets could not only remove heavy metals and organics, but also can simultaneously delay the polymer combustion, demonstrating the excellent integrated and multiple roles of MoS2 nanosheets in water remediation and polymer flame retardant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Tkaczyk, A.; Mitrowska, K.; Posyniak, A.: Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci. Total Environ. 717, 137222–137279 (2020)

    Google Scholar 

  2. Korish, M.A.; Attia, Y.A.: Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals. 10, 727–750 (2020)

    Google Scholar 

  3. Malik, D.S.; Jain, C.K.; Yadav, A.K.: Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review. Appl. Water Sci. 7, 2113–2136 (2017)

    Google Scholar 

  4. Das, R.; Vecitis, C.D.; Schulze, A.; Cao, B.; Ismail, A.F.; Lu, X.; Chen, J.; Ramakrishna, S.: Recent advances in nanomaterials for water protection and monitoring. Chem. Soc. Rev. 46, 6946–7020 (2017)

    Google Scholar 

  5. Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M.: Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J. Environ. Chem. Eng. 5, 2782–2799 (2017)

    Google Scholar 

  6. Sajid, M.; Nazal, M.K.; Ihsanullah, D.; Baig, N.; Osman, A.M.: Removal of heavy metals and organic pollutants from water using dendritic polymers based adsorbents a critical review. Sep. Purif. Technol. 191, 400–423 (2017)

    Google Scholar 

  7. Zhang, P.; Gong, J.L.; Zeng, G.M.; Deng, C.H.; Yang, H.C.; Liu, H.Y.; Huan, S.Y.: Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 322, 657–666 (2017)

    Google Scholar 

  8. Ranjith, K.S.; Manivel, P.; Rajendrakumar, R.T.; Uyar, T.: Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem. Eng. J. 325, 588–600 (2017)

    Google Scholar 

  9. Lu, F.; Astruc, D.: Nanomaterials for removal of toxic elements from water precipitaion adsorption heavy metals removal ion exchange filtration coagulation bio-sorprtion. Coord. Chem. Rev. 356, 147–164 (2018)

    Google Scholar 

  10. Ye, L.; Xu, H.; Zhang, D.; Chen, S.: Synthesis of bilayer MoS2 nanosheets by a facile hydrothermal method and their methyl orange adsorption capacity. Mater. Res. Bull. 55, 221–228 (2014)

    Google Scholar 

  11. Li, H.; Xie, F.; Li, W.; Fahlman, B.D.; Chen, M.; Li, W.: Preparation and adsorption capacity of porous MoS2 nanosheets. RSC Adv. 6, 105222–105230 (2016)

    Google Scholar 

  12. Lu, H.; Wang, J.; Tian, B.; Huang, X.; Bi, J.; Wang, T.; Hao, H.: Application of N-doped MoS2 nanocrystals for removal of azo dyes in wastewater. Chem. Eng. Technol. 41, 1180–1187 (2018)

    Google Scholar 

  13. Dong, L.; Li, Q.; Liao, Q.; Sun, C.; Li, X.; Zhao, Q.; Shen, R.; Zhao, B.; Asiri, A.M.; Marwani, H.M.: Characterization of molybdenum disulfide nanomaterial and its excellent sorption abilities for two heavy metals in aqueous media. Sep. Sci. Technol. 54, 847–859 (2019)

    Google Scholar 

  14. Wang, Q.; Yang, L.; Jia, F.; Li, Y.; Song, S.: Removal of Cd(II) from water by using nano-scale molybdenum disulphide sheets as adsorbents. J. Mol. Liq. (2018). https://doi.org/10.1016/j.molliq.2018.04.149

    Article  Google Scholar 

  15. Liu, C.; Jia, F.; Wang, Q.; Yang, B.; Song, S.: Two-dimensional molybdenum disulfide as adsorbent for high-efficient Pb(II) removal from water. Appl. Mater. Today. 9, 220–228 (2017)

    Google Scholar 

  16. Jia, F.; Wang, Q.; Wu, J.; Li, Y.; Song, S.: Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg2+ from water. ACS Sustain. Chem. Eng. 5, 7410–7419 (2017)

    Google Scholar 

  17. Wang, Z.; Mi, B.: Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 51, 8229–8244 (2017)

    Google Scholar 

  18. Citeau, M.; Olivier, J.; Mahmoud, A.; Vaxelaire, J.; Larue, O.; Vorobiev, E.: Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis. Water Res. 46, 4405–4416 (2012)

    Google Scholar 

  19. Mackie, A.L.; Walsh, M.E.: Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent. Water Res. 46, 327–334 (2012)

    Google Scholar 

  20. Lo, K.S.L.; Chen, Y.H.: Extracting heavy metals from municipal and industrial sludges. Sci. Total Environ. 90, 99–116 (1990)

    Google Scholar 

  21. Devi, P.; Saroha, A.K.: Utilization of sludge based adsorbents for the removal of various pollutants: a review. Sci. Total Environ. 578, 16–33 (2016)

    Google Scholar 

  22. Sethu, V.S.; Aziz, A.R.; Aroua, M.K.: Recovery and reutilisation of copper from metal hydroxide sludges. Clean Technol. Environ. Policy. 10, 131–136 (2008)

    Google Scholar 

  23. Zhou, K.; Gao, R.; Qian, X.: Self-assembly of exfoliated molybdenum disulfide (MoS2) nanosheets and layered double hydroxide (LDH): towards reducing fire hazards of epoxy. J. Hazard. Mater. 338, 343–355 (2017)

    Google Scholar 

  24. Zhou, K.; Liu, J.; Shi, Y.; Jiang, S.; Wang, D.; Hu, Y.; Gui, Z.: MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites. ACS Appl. Mater. Inter. 7, 6070–6081 (2015)

    Google Scholar 

  25. Matusinovic, Z.; Shukla, R.; Manias, E.; Hogshead, C.G.; Wilkie, C.A.: Polystyrene/molybdenum disulfide and poly (methyl methacrylate)/molybdenum disulfide nanocomposites with enhanced thermal stability. Polym. Degrad. Stab. 97, 2481–2486 (2012)

    Google Scholar 

  26. Zhou, K.; Gui, Z.; Hu, Y.: Synthesis and characterization of Cu-MoS2 hybrids and its influence on the thermal behavior of polyvinyl chloride composites. RSC Adv. 6, 88707–88712 (2016)

    Google Scholar 

  27. Wang, D.; Song, L.; Zhou, K.; Yu, X.; Hu, Y.; Wang, J.: Anomalous nano-barrier effects of ultrathin molybdenum disulfide nanosheets for improving the flame retardance of polymer nanocomposites. J. Mater. Chem. A. 3, 14307–14317 (2015)

    Google Scholar 

  28. Zhou, K.; Jiang, S.; Shi, Y.; Liu, J.; Wang, B.; Hu, Y.; Gui, Z.: Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Adv. 4, 40170–40180 (2014)

    Google Scholar 

  29. Feng, X.; Xing, W.; Song, L.; Hu, Y.: In situ synthesis of a MoS2/CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. J. Mater. Chem. A. 2, 13299–13308 (2014)

    Google Scholar 

  30. Zhou, K.; Zhang, Q.; Liu, J.; Wang, B.; Jiang, S.; Shi, Y.; Hu, Y.; Gui, Z.: Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv. 4, 13205–13214 (2014)

    Google Scholar 

  31. Yang, L.; Wang, Q.; Rangel-Mendez, J.R.; Jia, F.; Song, S.; Yang, B.: Self-assembly montmorillonite nanosheets supported hierarchical MoS2 as enhanced catalyst toward methyl orange degradation. Mater. Chem. Phys. 246, 122829–122837 (2020)

    Google Scholar 

  32. Jia, F.; Sun, K.; Yang, B.; Zhang, X.; Wang, Q.; Song, S.: Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water. Desalination 446, 21–30 (2018)

    Google Scholar 

  33. Yang, G.; Gao, Q.; Yang, S.; Yin, S.; Cai, X.; Yu, X.; Zhang, S.; Fang, Y.: Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles. Chemosphere 239, 124831–124831 (2020)

    Google Scholar 

  34. Jalees, M.I.; Farooq, M.U.; Basheer, S.; Asghar, S.: Removal of heavy metals from drinking water using chikni mitti (kaolinite): isotherm and kinetics. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-03722-z

    Article  Google Scholar 

  35. Dai, Y.; Li, J.; Shan, D.: Adsorption of tetracycline in aqueous solution by biochar derived from waste auricularia auricula dregs. Chemosphere 238, 124432–124432 (2020)

    Google Scholar 

  36. Massey, A.T.; Gusain, R.; Kumari, S.; Khatri, O.P.: Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes. Ind. Eng. Chem. Res. 55, 7124–7131 (2016)

    Google Scholar 

  37. Xiong, L.; Yang, Y.; Mai, J.X.; Sun, W.L.; Zhang, C.Y.; Wei, D.P.; Chen, Q.; Ni, J.R.: Adsorption behavior of methylene blue onto titanate nanotubes. Chem. Eng. J. 156, 313–320 (2010)

    Google Scholar 

  38. Zhou, K.; Zhang, Q.; Wang, B.; Liu, J.; Wen, P.; Gui, Z.; Hu, Y.: The integrated utilization of typical clays in removal of organic dyes and polymer nanocomposites. J. Clean. Prod. 81, 281–289 (2014)

    Google Scholar 

  39. Gu, P.; Zhao, C.; Wen, T.; Ai, Y.; Zhang, S.; Chen, W.; Wang, J.; Hu, B.; Wang, X.: Highly U(VI) immobilization on polyvinyl pyrrolidine intercalated molybdenum disulfide: experimental and computational studies. Chem. Eng. J. 359, 1563–1572 (2019)

    Google Scholar 

  40. Xu, M.; Zhou, H.; Wu, Z.; Li, N.; Xiong, Z.; Yao, G.; Lai, B.: Efficient degradation of sulfamethoxazole by NiCo2O4 modified expanded graphite activated peroxymonosulfate: characterization, mechanism and degradation intermediates. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.123103

    Article  Google Scholar 

  41. Ren, J.; Cao, J.-P.; Yang, F.-L.; Zhao, X.-Y.; Tang, W.; Cui, X.; Chen, Q.; Wei, X.-Y.: Layered uniformly delocalized electronic structure of carbon supported Ni catalyst for catalytic reforming of toluene and biomass tar. Energy Convers. Manag. 183, 182–192 (2019)

    Google Scholar 

  42. Huang, C.; Yu, Y.; Tang, X.; Liu, Z.; Zhang, J.; Ye, C.; Ye, Y.; Zhang, R.: Hydrogen generation by ammonia decomposition over Co/CeO2 catalyst: Influence of support morphologies. Appl. Surf. Sci. 532, 147335 (2020)

    Google Scholar 

  43. Shi, Y.; Gui, Z.; Yuan, B.; Hu, Y.; Zheng, Y.: Flammability of polystyrene/aluminim phosphinate composites containing modified ammonium polyphosphate. J. Therm. Anal. Calorim. 131, 1067–1077 (2018)

    Google Scholar 

  44. Manzi-Nshuti, C.; Chen, D.; Su, S.; Wilkie, C.A.: Structure-property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminum. Polym. Degrad. Stab. 94, 1290–1297 (2009)

    Google Scholar 

  45. Wang, L.; Su, S.; Chen, D.; Wilkie, C.A.: Variation of anions in layered double hydroxides: effects on dispersion and fire properties. Polym. Degrad. Stab. 94, 770–781 (2009)

    Google Scholar 

  46. Wang, X.; Zhou, S.; Xing, W.; Yu, B.; Feng, X.; Song, L.; Hu, Y.: Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A. 1, 4383–4390 (2013)

    Google Scholar 

  47. Tai, Q.; Hu, Y.; Yuen, R.K.K.; Song, L.; Lu, H.: Synthesis, structure–property relationships of polyphosphoramides with high char residues. J. Mater. Chem. 21, 6621–6627 (2011)

    Google Scholar 

  48. Song, R.: Synthesis of carbon nanotubes from polypropylene in the presence of Ni/Mo/MgO catalysts via combustion. Chem. Lett. 40, 1110–1112 (2011)

    Google Scholar 

  49. Yuan, B.; Hu, Y.; Chen, X.; Shi, Y.; Niu, Y.; Zhang, Y.; He, S.; Dai, H.: Dual modification of graphene by polymeric flame retardant and Ni(OH)2 nanosheets for improving flame retardancy of polypropylene. Compos. Part A Appl. Sci. Manuf. 100, 106–117 (2017)

    Google Scholar 

Download references

Acknowledgements

Financial supports in the present work are from the Shandong Provincial Education Department, China (Grant No. J18KB083), Qingchuang Talent Incubation Program from Colleges and universities in Shandong Province (Grant No. 2019.133), Ship Control Engineering and Intelligent Systems Engineering Technology Research Center of Shandong Province and Ship Motion Control and Systems Engineering Technology Research center of Weihai, China (Grant No. SSCC-2018-0001 and SSCC-2019-0005), the Shandong Postdoctoral Innovation Project, the Postdoctoral Science Foundation of Weihai Science and Technology Bureau, the Postdoctoral Science Foundation of Homey Group Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lang Yang or Yongjun Sun.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 140kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tang, C., Yang, L. et al. Integrated Roles of MoS2 Nanosheets for Water Treatment and Polymer Flame Retardant. Arab J Sci Eng 46, 6753–6763 (2021). https://doi.org/10.1007/s13369-021-05424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05424-x

Keywords

Navigation