Skip to main content

Advertisement

Log in

Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A chitinase gene from rice (Rchit) was introduced into three varieties of peanut through Agrobacterium-mediated genetic transformation resulting in 30 transgenic events harboring the Rchit gene. Stable integration and expression of the transgenes were confirmed using PCR, RT-PCR and Southern blot analysis. Progeny derived from selfing of the primary transgenic events revealed a Mendelian inheritance pattern (3:1) for the transgenes. The chitinase activity in the leaves of the transgenic events was 2 to 14-fold greater than that in the non-transformed control plants. Seeds of most transgenic events showed 0–10 % A. flavus infection during in vitro seed inoculation bioassays. Transgenic peanut plants evaluated for resistance against late leaf spot (LLS) and rust using detached leaf assays showed longer incubation, latent period and lower infection frequencies when compared to their non-transformed counterparts. A significant negative correlation existed between the chitinase activity and the frequency of infection to the three tested pathogens. Three progenies from two transgenic events displayed significantly higher disease resistance for LLS, rust and A. flavus infection and are being advanced for further evaluations under confined field conditions to confirm as sources to develop peanut varieties with enhanced resistance to these fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7

Similar content being viewed by others

Abbreviations

LLS:

Late leaf spot

SAT:

Semi arid tropics

SEM:

Shoot elongation media

References

  • Anuradha TS, Divya K, Jami SK, Kirti PB (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Article  Google Scholar 

  • Badigannavar AM, Kale DM, Mondal S, Murty GSS (2005) Trombay groundnut recombinants resistant to foliar diseases. Mutat Breed Newsl Rev 1:11–12

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Carstens M, Vivier MA, Pretorius IS (2003) The Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transg Res 12:497–508

    Article  CAS  Google Scholar 

  • Datta K, Koukolikova-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet 100:832–839

    Article  CAS  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 4:19–21

    Article  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    Article  PubMed  CAS  Google Scholar 

  • Ganesan M, Bhanumathi P, Ganesh Kumari K, Lakshmi Prabha A, Pill-Soon S, Jayabalan N (2009) Transgenic Indian Cotton (Gossypium hirsutum) harboring rice chitinase gene (Chi II) confers resistance to two fungal pathogens. Am J Biochem Biotechnol 5:63–74

    Article  CAS  Google Scholar 

  • Grison R, Grezes-Basset B, Schneider M, Lucante N, Olsen L, Leguay JJ, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 14:643–646

    Article  PubMed  CAS  Google Scholar 

  • Hossain MD, Rahman MZ, Abeda K, Rahman MM (2007) Screening of groundnut genotypes for leaf spots and rust resistance. Int J Sustain Crop Prod 2:7–10

    Google Scholar 

  • Huang JK, Wen L, Swegle M, Tran HC, Thin TH, Naylor HM, Muthukrishnan S, Reeck GR (1991) Nucleotide sequence of a rice genomic clone that encodes a class I endochitinase. Plant Mol Biol 16:479–480

    Article  PubMed  CAS  Google Scholar 

  • Iseli B, Boller T, Neuhaus JM (1993) The N-terminal cysteine rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol 103:221–226

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Takahashi K, Takizawa H, Nikaidou N, Tanaka H, Nishihashi H, Watanabe T, Nishizawa Y (2003) Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. Biosci Biotechnol Biochem 67:847–855

    Article  PubMed  CAS  Google Scholar 

  • Jwanny EW, El-Sayed ST, Salem AM, Shehata AN (2001) Characterization and antifungal evaluation of chitinase and laminarinases from sugarbeet leaves. Pak J Biol Sci 4:271–276

    Article  Google Scholar 

  • Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima M, Akutsu K (2002) Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci 162:655–662

    Article  CAS  Google Scholar 

  • Liang XQ, Guo BZ, Holbrook CC, Lynch RE (1994) Resistance to Aspergillus flavus in peanut seeds is associated with constitutive trypsin inhibitor and inducible chitinase and β-1,3-glucanase. Proc Amer Peanut Res Edu Soc, July 8–11, 2003, Clear Water, Florida 35:85

  • Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Nat Biotechnol 13:686–691

    Article  CAS  Google Scholar 

  • Livingstone DM, Hampton JL, Phipps PM, Elizabeth AG (2005) Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 137:1354–1362

    Article  PubMed  CAS  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1984) Ethylene: symptom, not signal for the induction of chitinase and β-1,3glucanase in pea pods by pathogens and elicitors. Plant Physiol 76:607–611

    Article  PubMed  CAS  Google Scholar 

  • McDonald D, Subrahmanyam P, Gibbons RW, Smith DH (1985) Early and late leaf spots of groundnut. Information Bull No 21, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, 502324, India, p 24

  • Moore KG, Price MS, Boston RS, Weissinger AK, Payne GA (2004) A chitinase from Tex6 maize kernels inhibits growth of Aspergillus flavus. Phytopathol 94:82–87

    Article  CAS  Google Scholar 

  • Nandakumar R, Babu S, Kalpana K, Raguchander T, Balasubramanian P, Samiyappan R (2007) Agrobacterium-mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance. Biol Plant 51:142–148

    Article  CAS  Google Scholar 

  • Pasonen HL, Seppanen SK, Degefu Y, Rytkonen A, Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562–570

    Article  PubMed  CAS  Google Scholar 

  • Pensuk V, Patanothai A, Jogloy S, Wongkaew S, Akkasaeng C, Vorasoot N (2003) Reaction of peanut cultivars to late leafspot and rust. Songklanakarin J Sci Technol 25:289–295

    Google Scholar 

  • Rao MJV, Upadhyaya HD, Mehan VK, Nigam SN, McDonald D, Reddy NS (1995) Registration of peanut germplasm ICGV 88145 and ICGV 89104 resistant to seed infection by Aspergillus flavus. Crop Sci 35:1717

    Article  Google Scholar 

  • Reddy LJ, Nigam SN, Subrahmanyam P, Reddy AGS, McDonald D, Gibbons RW, Pentaiah V (1992) Registration of ‘ICGV 87160’ peanut cultivar. Crop Sci 32:1075

    Article  Google Scholar 

  • Reddy LJ, Nigam SN, Moss JP, Singh AK, Subrahmanyam P, McDonald D, Reddy AGS (1996) Registration of ICGV 86699 peanut germplasm line with multiple disease and insect resistance. Crop Sci 36:821

    Article  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  PubMed  CAS  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van Den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tobacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol 101:857–863

    PubMed  CAS  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens mediated genetic transformation. Plant Sci 159:7–19

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Bhatnagar-Mathur P (2006) Peanut (Arachis hypogaea L.). In: Wang K (ed) Methods in molecular biology, Agrobacterium Protocols, vol 343. Springer, New Jersey, pp 347–358, ISBN 1-58829-536-2

    Chapter  Google Scholar 

  • Sharma KK, Bhatnagar-Mathur P, Saivishnupriya K, Anjaiah V, Vadez V, Waliyar F, Lava Kumar P, Nigam SN, Hoisington DH (2006) Genetic engineering of groundnut for crop improvement, 44 pp. In: Groundnut Aflatoxin Management and Genomics. Program and Book of Abstract. International Conf., 5–9 Nov. 2006, Guangzhou, Gungdong, China. Crops Research Institute, Guangdong Acad Agri Sci

  • Singh AK, Mehan VK, Nigam SN (1997) Sources of resistance to groundnut fungal and bacterial diseases: an update and appraisal. Information Bull No. 50. ICRISAT, Patancheru, p 48

    Google Scholar 

  • Sreeramanan S, Maziah M, Xavier R (2009) A protocol for Agrobacterium-mediated transformation of banana with a rice chitinase gene. Emir J Food Agric 21:18–33

    Google Scholar 

  • Subramanyam P, Rao VR, McDonald D, Moss JP, Gibbons RW (1989) Origins of resistance to rust and late leaf spot in peanut (Arachis hypogaea L.). Econ Bot 43:444–455

    Article  Google Scholar 

  • Sundaresha S, Manoj Kumar A, Rohini S, Math SA, Keshamma E, Chandrashekar SC, Udayakumar M (2009) Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase. Eur J Plant Pathol 126:497–508

    Article  Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T, Akutsu K (1998) Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep 17:159–164

    Article  CAS  Google Scholar 

  • Takahashi W, Fujimori M, Miura Y, Komatsu T, Nishizawa Y, Hibi T, Takamizo T (2005) Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene. Plant Cell Rep 23:811–818

    Article  PubMed  CAS  Google Scholar 

  • Thakur RP, Rao VP, Reddy SV, Ferguson M (2000) Evaluation of wild Arachis germplasm accessions for in vitro seed colonization and aflatoxin production by Aspergillus flavus. Int Arachis Newsl 20:44–46

    Google Scholar 

  • Waliyar F, Bosc JP, Bonkoungou S (1993) Sources of resistance to foliar diseases of groundnut and their stability in West Africa. Oleagineux 48:283–287

    Google Scholar 

  • Waliyar F, Ba A, Hassan H, Bonkoungou S, Bosc JP (1994) Sources of resistance to Aspergillus flavus and aflatoxin contamination in groundnut genotypes in West Africa. Plant Dis 78:704–708

    Article  Google Scholar 

  • Waliyar F, Adomou M, Benin C, Traore A (2000) Rational use of fungicide applications to maximize peanut yield under foliar disease pressure in West Africa. Plant Dis 84:1203–1211

    Article  CAS  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52:243–252

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. S. Muthukrishnan, Department of Biochemistry, Kansas State University, for kindly providing the rice chitinase gene. We also thank R. Kanaka Reddy for excellent technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K., Bhatnagar-Mathur, P., Waliyar, F. et al. Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. J. Plant Biochem. Biotechnol. 22, 222–233 (2013). https://doi.org/10.1007/s13562-012-0155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-012-0155-9

Keywords

Navigation