Skip to main content
Log in

Fetal Physiologically Based Pharmacokinetic Models: Systems Information on Fetal Cardiac Output and Its Distribution to Different Organs during Development

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Fetal circulation is unique and the parameters describing hemodynamic status during development are critical for constructing a fetal physiologically based pharmacokinetic model. To date, a comprehensive review of circulatory changes during fetal development, with a specific focus on developing these models, has not been reported. The objective of this work was to collate, analyze, and mathematically describe physiological information on fetal cardiac output and tissue blood flows during development.

Methods

A comprehensive literature search was carried out to collate and evaluate the changes to fetal cardiac output and fetal tissue blood flows during growth. The collated data were assessed, integrated, and analyzed to establish continuous mathematical functions describing the average parameter changes and variability during development.

Results

Data were available for fetal cardiac output (14 Doppler studies), blood flow through the fetal umbilical vein (15 studies), ductus venosus (6 studies), liver veins (5 studies), brain (4 studies), lungs (5 studies), and kidneys (2 studies). Fetal cardiac output is described as either an age- or weight-dependent function. The latter is preferred as it generates an individualized cardiac output that is correlated to the fetal body weight. Blood flow as a proportion of fetal cardiac output to the liver, placenta, brain, kidneys, and lungs was age varying, whilst for the adipose, bone, heart, muscle, and skin the blood flow proportions were fixed. The pattern of change (with respect to direction and pace) for each of these parameters was different.

Conclusions

Despite limitations in the availability of some values, the collected data provide a useful resource for fetal physiologically based pharmacokinetic modeling. Potential applications of these data include predicting xenobiotic exposure and risk assessment in the fetus following the administration of maternally dosed drugs or unintended exposure to environmental toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Murphy PJ. The fetal circulation. CEACCP. 2005;5:107–12.

    Google Scholar 

  2. Kiserud T. Physiology of the fetal circulation. Semin Fetal Neonatal Med. 2005;10:493–503.

    PubMed  Google Scholar 

  3. Vimpeli T, Huhtala H, Wilsgaard T, Acharya G. Fetal aortic isthmus blood flow and the fraction of cardiac output distributed to the upper body and brain at 11–20 weeks of gestation. Ultrasound Obstet Gynecol. 2009;33:538–44.

    CAS  PubMed  Google Scholar 

  4. Finnemore A, Groves A. Physiology of the fetal and transitional circulation. Semin Fetal Neonatal Med. 2015;20:210–6.

    PubMed  Google Scholar 

  5. Gaohua L, Abduljalil K, Jamei M, Johnson TN, Rostami-Hodjegan A. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol. 2012;74:873–85.

    PubMed  PubMed Central  Google Scholar 

  6. Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2012;51:365–96.

    CAS  PubMed  Google Scholar 

  7. Zhang Z, Imperial MZ, Patilea-Vrana GI, Wedagedera J, Gaohua L, Unadkat JD. Development of a novel maternal-fetal physiologically based pharmacokinetic model I: insights into factors that determine fetal drug exposure through simulations and sensitivity analyses. Drug Metab Dispos. 2017;45:920–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kapraun DF, Wambaugh JF, Setzer RW, Judson RS. Empirical models for anatomical and physiological changes in a human mother and fetus during pregnancy and gestation. PLoS ONE. 2019;14:e0215906.

    PubMed  PubMed Central  Google Scholar 

  9. Dallmann A, Ince I, Coboeken K, Eissing T, Hempel G. A physiologically based pharmacokinetic model for pregnant women to predict the pharmacokinetics of drugs metabolized via several enzymatic pathways. Clin Pharmacokinet. 2018;57:749–68.

    CAS  PubMed  Google Scholar 

  10. Clewell HJ, Gearhart JM, Gentry PR, Covington TR, VanLandingham CB, Crump KS, et al. Evaluation of the uncertainty in an oral reference dose for methylmercury due to interindividual variability in pharmacokinetics. Risk Anal. 1999;19:547–58.

    CAS  PubMed  Google Scholar 

  11. Abduljalil K, Johnson TN, Rostami-Hodjegan A. Fetal physiologically-based pharmacokinetic models: systems information on fetal biometry and gross composition. Clin Pharmacokinet. 2018;57:1149–71.

    PubMed  Google Scholar 

  12. Abduljalil K, Jamei M, Johnson TN. Fetal physiologically based pharmacokinetic models: systems information on the growth and composition of fetal organs. Clin Pharmacokinet. 2019;58:23562.

    Google Scholar 

  13. Abduljalil K, Jamei M, Johnson TN. Fetal physiologically based pharmacokinetic models: systems information on fetal blood components and binding proteins. Clin Pharmacokinet. 2020;59:629–42.

    CAS  PubMed  Google Scholar 

  14. Schoennagel BP, Yamamura J, Kording F, Fischer R, Bannas P, Adam G, et al. Fetal dynamic phase-contrast MR angiography using ultrasound gating and comparison with Doppler ultrasound measurements. Eur Radiol. 2019;29:4169–76.

    CAS  PubMed  Google Scholar 

  15. Zheng M, Schaal M, Chen Y, Li X, Shentu W, Zhang P, et al. Real-time 3-dimensional echocardiographic assessment of ventricular volume, mass, and function in human fetuses. PLoS ONE. 2013;8:e58494.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Uittenbogaard LB, Haak MC, Spreeuwenberg MD, van Vugt JM. Fetal cardiac function assessed with four-dimensional ultrasound imaging using spatiotemporal image correlation. Ultrasound Obstet Gynecol. 2009;33:272–81.

    CAS  PubMed  Google Scholar 

  17. Molina FS, Faro C, Sotiriadis A, Dagklis T, Nicolaides KH. Heart stroke volume and cardiac output by four-dimensional ultrasound in normal fetuses. Ultrasound Obstet Gynecol. 2008;32:181–7.

    CAS  PubMed  Google Scholar 

  18. DeKoninck P, Steenhaut P, Van Mieghem T, Mhallem M, Richter J, Bernard P, et al. Comparison of Doppler-based and three-dimensional methods for fetal cardiac output measurement. Fetal Diagn Ther. 2012;32:72–8.

    PubMed  Google Scholar 

  19. De Smedt MC, Visser GH, Meijboom EJ. Fetal cardiac output estimated by Doppler echocardiography during mid- and late gestation. Am J Cardiol. 1987;60:338–42.

    PubMed  Google Scholar 

  20. Mielke G, Benda N. Cardiac output and central distribution of blood flow in the human fetus. Circulation. 2001;103:1662–8.

    CAS  PubMed  Google Scholar 

  21. Rasanen J, Wood DC, Weiner S, Ludomirski A, Huhta JC. Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy. Circulation. 1996;94:1068–73.

    CAS  PubMed  Google Scholar 

  22. Lisowski LA, Verheijen PM, De Smedt MM, Visser GH, Meijboom EJ. Altered fetal circulation in type-1 diabetic pregnancies. Ultrasound Obstet Gynecol. 2003;21:365–9.

    CAS  PubMed  Google Scholar 

  23. Rudolph AM, Iwamoto HS, Teitel DF. Circulatory changes at birth. J Perinat Med. 1988;16(Suppl. 1):9–21.

    PubMed  Google Scholar 

  24. Godfrey ME, Friedman KG, Drogosz M, Rudolph AM, Tworetzky W. Cardiac output and blood flow redistribution in fetuses with D-loop transposition of the great arteries and intact ventricular septum: insights into pathophysiology. Ultrasound Obstet Gynecol. 2017;50:612–7.

    CAS  PubMed  Google Scholar 

  25. Hamill N, Yeo L, Romero R, Hassan SS, Myers SA, Mittal P, et al. Fetal cardiac ventricular volume, cardiac output, and ejection fraction determined with 4-dimensional ultrasound using spatiotemporal image correlation and virtual organ computer-aided analysis. Am J Obstet Gynecol. 2011;205(76):e1-10.

    Google Scholar 

  26. Vimpeli T, Huhtala H, Wilsgaard T, Acharya G. Fetal cardiac output and its distribution to the placenta at 11–20 weeks of gestation. Ultrasound Obstet Gynecol. 2009;33:265–71.

    CAS  PubMed  Google Scholar 

  27. Veille J-C, Hanson RA, Tatum K, Kelley K. Quantitative assessment of human fetal renal blood flow. Am J Obstet Gynecol. 1993;169:1399–402.

    CAS  PubMed  Google Scholar 

  28. Kiserud T, Ebbing C, Kessler J, Rasmussen S. Fetal cardiac output, distribution to the placenta and impact of placental compromise. Ultrasound Obstet Gynecol. 2006;28:126–36.

    CAS  PubMed  Google Scholar 

  29. Sutton MS, Groves A, MacNeill A, Sharland G, Allan L. Assessment of changes in blood flow through the lungs and foramen ovale in the normal human fetus with gestational age: a prospective Doppler echocardiographic study. Br Heart J. 1994;71:232–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Prsa M, Sun L, van Amerom J, Yoo SJ, Grosse-Wortmann L, Jaeggi E, et al. Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging. 2014;7:663–70.

    PubMed  Google Scholar 

  31. Allan LD, Chita SK, Al-Ghazali W, Crawford DC, Tynan M. Doppler echocardiographic evaluation of the normal human fetal heart. Br Heart J. 1987;57:528–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kenny JF, Plappert T, Doubilet P, Saltzman DH, Cartier M, Zollars L, et al. Changes in intracardiac blood flow velocities and right and left ventricular stroke volumes with gestational age in the normal human fetus: a prospective Doppler echocardiographic study. Circulation. 1986;74:1208–16.

    CAS  PubMed  Google Scholar 

  33. Alsolai AA, Bligh LN, Greer RM, Kumar S. Relationship of prelabor fetal cardiac function with intrapartum fetal compromise and neonatal status at term. Ultrasound Obstet Gynecol. 2018;51:799–805.

    CAS  PubMed  Google Scholar 

  34. Rizzo G, Arduini D, Valensise H, Romanini C. Effects of behavioural states on cardiac output in the healthy human fetus at 36–38 weeks of gestation. Early Hum Dev. 1990;23:109–15.

    CAS  PubMed  Google Scholar 

  35. Ho DY, Josowitz R, Katcoff H, Griffis HM, Tian Z, Gaynor JW, et al. Mid-gestational fetal placental blood flow is diminished in the fetus with congenital heart disease. Prenat Diagn. 2020;40:1432–8.

    PubMed  Google Scholar 

  36. Seed M, van Amerom JF, Yoo SJ, Al Nafisi B, Grosse-Wortmann L, Jaeggi E, et al. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:79.

    PubMed  PubMed Central  Google Scholar 

  37. Simioni C, Araujo Junior E, Martins WP, Rolo LC, Rocha LA, Nardozza LM, et al. Fetal cardiac output and ejection fraction by spatio-temporal image correlation (STIC): comparison between male and female fetuses. Rev Bras Cir Cardiovasc. 2012;27:275–82.

    PubMed  Google Scholar 

  38. Acharya G, Wilsgaard T, Berntsen GKR, Maltau JM, Kiserud T. Doppler-derived umbilical artery absolute velocities and their relationship to fetoplacental volume blood flow: a longitudinal study. Ultrasound Obstet Gynecol. 2005;25:444–53.

    CAS  PubMed  Google Scholar 

  39. Boito S, Struijk PC, Ursem NT, Stijnen T, Wladimiroff JW. Umbilical venous volume flow in the normally developing and growth-restricted human fetus. Ultrasound Obstet Gynecol. 2002;19:344–9.

    CAS  PubMed  Google Scholar 

  40. Flo K, Wilsgaard T, Acharya G. Longitudinal reference ranges for umbilical vein blood flow at a free loop of the umbilical cord. Ultrasound Obstet Gynecol. 2010;36:567–72.

    CAS  PubMed  Google Scholar 

  41. Rizzo G, Capponi A, Pietrolucci ME, Arduini D. Umbilical vein blood flow at 11 + 0 to 13 + 6 weeks of gestation. J Matern Fetal Neonatal Med. 2010;23:315–9.

    PubMed  Google Scholar 

  42. Rizzo G, Rizzo L, Aiello E, Allegra E, Arduini D. Modelling umbilical vein blood flow normograms at 14–40 weeks of gestation by quantile regression analysis. J Matern Fetal Neonatal Med. 2016;29:701–6.

    PubMed  Google Scholar 

  43. Kessler J, Rasmussen S, Godfrey K, Hanson M, Kiserud T. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe. Pediatr Res. 2008;63:315–20.

    PubMed  Google Scholar 

  44. Nyberg MK, Johnsen SL, Rasmussen S, Kiserud T. Fetal breathing is associated with increased umbilical blood flow. Ultrasound Obstet Gynecol. 2010;36:718–23.

    CAS  PubMed  Google Scholar 

  45. Lees C, Albaiges G, Deane C, Parra M, Nicolaides KH. Assessment of umbilical arterial and venous flow using color Doppler. Ultrasound Obstet Gynecol. 1999;14:250–5.

    CAS  PubMed  Google Scholar 

  46. Bellotti M, Pennati G, De Gasperi C, Battaglia FC, Ferrazzi E. Role of ductus venosus in distribution of umbilical blood flow in human fetuses during second half of pregnancy. Am J Physiol Heart Circ Physiol. 2000;279:H1256–63.

    CAS  PubMed  Google Scholar 

  47. Sutton MS, Theard MA, Bhatia SJ, Plappert T, Saltzman DH, Doubilet P. Changes in placental blood flow in the normal human fetus with gestational age. Pediatr Res. 1990;28:383–7.

    CAS  PubMed  Google Scholar 

  48. Tchirikov M, Rybakowski C, Huneke B, Schroder HJ. Blood flow through the ductus venosus in singleton and multifetal pregnancies and in fetuses with intrauterine growth retardation. Am J Obstet Gynecol. 1998;178:943–9.

    CAS  PubMed  Google Scholar 

  49. Opheim GL, Moe Holme A, Blomhoff Holm M, Melbye Michelsen T, Muneer Zahid S, Paasche Roland MC, et al. The impact of umbilical vein blood flow and glucose concentration on blood flow distribution to the fetal liver and systemic organs in healthy pregnancies. FASEB J. 2020;34:12481–91.

    CAS  PubMed  Google Scholar 

  50. Opheim GL, Henriksen T, Haugen G. The effect of a maternal meal on fetal liver blood flow. PLoS ONE. 2019;14:e0216176.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferrazzi E, Rigano S, Bozzo M, Bellotti M, Giovannini N, Galan H, et al. Umbilical vein blood flow in growth-restricted fetuses. Ultrasound Obstet Gynecol. 2000;16:432–8.

    CAS  PubMed  Google Scholar 

  52. Barbera A, Galan HL, Ferrazzi E, Rigano S, Jozwik M, Battaglia FC, et al. Relationship of umbilical vein blood flow to growth parameters in the human fetus. Am J Obstet Gynecol. 1999;181:174–9.

    CAS  PubMed  Google Scholar 

  53. Gill RW, Kossoff G, Warren PS, Garrett WJ. Umbilical venous flow in normal and complicated pregnancy. Ultrasound Med Biol. 1984;10:349–63.

    CAS  PubMed  Google Scholar 

  54. Battaglia FC. Clinical studies linking fetal velocimetry, blood flow and placental transport in pregnancies complicated by intrauterine growth retardation (IUGR). Trans Am Clin Climatol Assoc. 2003;114:305–13.

    PubMed  PubMed Central  Google Scholar 

  55. Singh Y, Tissot C. Echocardiographic evaluation of transitional circulation for the neonatologists. Front Pediatr. 2018;6:140.

    PubMed  PubMed Central  Google Scholar 

  56. Bellotti M, Pennati G, De Gasperi C, Bozzo M, Battaglia FC, Ferrazzi E. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am J Obstet Gynecol. 2004;190:1347–58.

    PubMed  Google Scholar 

  57. Haugen G, Kiserud T, Godfrey K, Crozier S, Hanson M. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol. 2004;24:599–605.

    CAS  PubMed  Google Scholar 

  58. Kessler J, Rasmussen S, Kiserud T. The fetal portal vein: normal blood flow development during the second half of human pregnancy. Ultrasound Obstet Gynecol. 2007;30:52–60.

    CAS  PubMed  Google Scholar 

  59. Kiserud T, Rasmussen S, Skulstad S. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am J Obstet Gynecol. 2000;182(1 Pt 1):147–53. https://doi.org/10.1016/s0002-9378(00)70504-7.

    Article  CAS  PubMed  Google Scholar 

  60. Zvanca M, Gielchinsky Y, Abdeljawad F, Bilardo CM, Nicolaides KH. Hepatic artery Doppler in trisomy 21 and euploid fetuses at 11–13 weeks. Prenat Diagn. 2011;31:22–7.

    PubMed  Google Scholar 

  61. Ebbing C, Rasmussen S, Godfrey KM, Hanson MA, Kiserud T. Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus. Reprod Sci. 2008;15:166–78.

    PubMed  Google Scholar 

  62. Edelstone DI, Rudolph AM, Heymann MA. Liver and ductus venosus blood flows in fetal lambs in utero. Circ Res. 1978;42:426–33.

    CAS  PubMed  Google Scholar 

  63. International Commission on Radiological Protection. Basic anatomical and physiological data for use in radiological protection reference values. Ann ICRP. 2002;32:1–277.

    Google Scholar 

  64. Rudolph AM, Heymann MA, Teramo KAW, Barrett CT, Räihä NCR. Studies on the circulation of the previable human fetus. Pediatr Res. 1971;5:452–65.

    CAS  Google Scholar 

  65. Veille J-C, Hanson R, Tatum K. Longitudinal quantitation of middle cerebral artery blood flow in normal human fetuses. Am J Obstet Gynecol. 1993;169:1393–8.

    CAS  PubMed  Google Scholar 

  66. Konje JC, Abrams K, Bell SC, de Chazal RC, Taylor DJ. The application of color power angiography to the longitudinal quantification of blood flow volume in the fetal middle cerebral arteries, ascending aorta, descending aorta, and renal arteries during gestation. Am J Obstet Gynecol. 2000;182:393–400.

    CAS  PubMed  Google Scholar 

  67. Avitan T, Sanders A, Brain U, Rurak D, Oberlander TF, Lim K. Variations from morning to afternoon of middle cerebral and umbilical artery blood flow, and fetal heart rate variability, and fetal characteristics in the normally developing fetus. J Clin Ultrasound. 2018;46(4):235–40. https://doi.org/10.1002/jcu.22569.

    Article  PubMed  Google Scholar 

  68. Vali P, Lakshminrusimha S. The fetus can teach us: oxygen and the pulmonary vasculature. Children (Basel). 2017;4:67.

    PubMed Central  Google Scholar 

  69. Hislop A, Reid L. Intra-pulmonary arterial development during fetal life-branching pattern and structure. J Anat. 1972;113:35–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Andriani G, Persico A, Tursini S, Ballone E, Cirotti D, Lelli CP. The renal-resistive index from the last 3 months of pregnancy to 6 months old. BJU Int. 2001;87:562–4.

    CAS  PubMed  Google Scholar 

  71. Ji EK, Kwon TH. P45.13: imaging of fetal coronary arteries and pulmonary veins with gray and color flow Doppler sonography. Ultrasound Obstet Gynecol. 2007;30:627.

    Google Scholar 

  72. Baschat AA, Gembruch U, Reiss I, Gortner L, Diedrich K. Demonstration of fetal coronary blood flow by Doppler ultrasound in relation to arterial and venous flow velocity waveforms and perinatal outcome: the ‘heart-sparing effect.’ Ultrasound Obstet Gynecol. 1997;9:162–72.

    CAS  PubMed  Google Scholar 

  73. Baschat AA, Muench MV, Gembruch U. Coronary artery blood flow velocities in various fetal conditions. Ultrasound Obstet Gynecol. 2003;21:426–9.

    CAS  PubMed  Google Scholar 

  74. Rudolph AM, Heymann MA. Circulatory changes during growth in the fetal lamb. Circ Res. 1970;26:289–99.

    CAS  PubMed  Google Scholar 

  75. Ebbing C, Rasmussen S, Godfrey KM, Hanson MA, Kiserud T. Fetal superior mesenteric artery: longitudinal reference ranges and evidence of regulatory link to portal liver circulation. Early Hum Dev. 2009;85:207–13.

    PubMed  Google Scholar 

  76. Matasova K, Dokus K, Zubor P, Danko J, Zibolen M. Physiological changes in blood flow velocities in the superior mesenteric and coeliac artery in healthy term fetuses and newborns during perinatal period. J Matern Fetal Neonatal Med. 2011;24:827–32.

    PubMed  Google Scholar 

  77. Ebbing C, Rasmussen S, Godfrey KM, Hanson MA, Kiserud T. Fetal celiac and splenic artery flow velocity and pulsatility index: longitudinal reference ranges and evidence for vasodilation at a low portocaval pressure gradient. Ultrasound Obstet Gynecol. 2008;32:663–72.

    CAS  PubMed  Google Scholar 

  78. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP. 2002;32:1–277.

    Google Scholar 

  79. Jensen A, Hohmann M, Kunzel W. Dynamic changes in organ blood flow and oxygen consumption during acute asphyxia in fetal sheep. J Dev Physiol. 1987;9:543–59.

    CAS  PubMed  Google Scholar 

  80. Tan W, Riggs KW, Thies RL, Rurak DW. Use of an automated fluorescent microsphere method to measure regional blood flow in the fetal lamb. Can J Physiol Pharmacol. 1997;75:959–68.

    CAS  PubMed  Google Scholar 

  81. Wu PY, Wong WH, Guerra G, Miranda R, Godoy RR, Preston B, et al. Peripheral blood flow in the neonate; 1. Changes in total, skin, and muscle blood flow with gestational and postnatal age. Pediatr Res. 1980;14:1374–8.

    CAS  PubMed  Google Scholar 

  82. Sepulveda W, Bower S, Nicolaidis P, De Swiet M, Fisk NM. Discordant blood flow velocity waveforms in left and right brachial arteries in growth-retarded fetuses. Obstet Gynecol. 1995;86:734–8.

    CAS  PubMed  Google Scholar 

  83. Rizzo G, Capponi A, Chaoui R, Taddei F, Arduini D, Romanini C. Blood flow velocity waveforms from peripheral pulmonary arteries in normally grown and growth-retarded fetuses. Ultrasound Obstet Gynecol. 1996;8:87–92.

    CAS  PubMed  Google Scholar 

  84. Konje JC, Taylor DJ, Rennie MJ. Application of ultrasonic transit time flowmetry to the measurement of umbilical vein blood flow at caesarean section. Br J Obstet Gynaecol. 1996;103:1004–8.

    CAS  PubMed  Google Scholar 

  85. Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013;15:1012–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. De Sousa MM, Hirt D, Urien S, Valade E, Bouazza N, Foissac F, et al. Physiologically-based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women. Br J Clin Pharmacol. 2015;80:1031–41.

    Google Scholar 

  87. Luecke RH, Wosilait WD, Pearce BA, Young JF. A physiologically based pharmacokinetic computer model for human pregnancy. Teratology. 1994;49:90–103.

    CAS  PubMed  Google Scholar 

  88. Bravo-Valenzuela NJ, Peixoto AB, Carrilho MC, Siqueira Pontes AL, Chagas CC, Simioni C, et al. Fetal cardiac function by three-dimensional ultrasound using 4D-STIC and VOCAL: an update. J Ultrason. 2019;19:287–94.

    PubMed  PubMed Central  Google Scholar 

  89. Sato M, Tsukimori K, Fujita Y, Morihana E, Fusazaki N, Takahata Y, et al. Prenatal diagnosis of coarctation of the aorta using 4-dimensional fetal echocardiography with power Doppler imaging and spatiotemporal image correlation. J Ultrasound Med. 2013;32:719–21.

    PubMed  Google Scholar 

  90. Rizzo G, Capponi A, Cavicchioni O, Vendola M, Arduini D. Fetal cardiac stroke volume determination by four-dimensional ultrasound with spatio-temporal image correlation compared with two-dimensional and Doppler ultrasonography. Prenat Diagn. 2007;27:1147–50.

    PubMed  Google Scholar 

  91. Deng J, Rodeck CH. Current applications of fetal cardiac imaging technology. Curr Opin Obstet Gynecol. 2006;18:177–84.

    PubMed  Google Scholar 

  92. Chaoui R, Hoffmann J, Heling KS. Three-dimensional (3D) and 4D color Doppler fetal echocardiography using spatio-temporal image correlation (STIC). Ultrasound Obstet Gynecol. 2004;23:535–45.

    CAS  PubMed  Google Scholar 

  93. Crispi F, Gratacos E. Fetal cardiac function: technical considerations and potential research and clinical applications. Fetal Diagn Ther. 2012;32:47–64.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eleanor Savill and Anna Kenworthy for their assistance with collecting the references and preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Abduljalil.

Ethics declarations

Funding

No funding was received for the conduct of this study or the preparation of this article.

Conflict of Interest

All authors are full-time employees of Certara UK Limited (Simcyp Division). The activities of Certara are supported by a consortium of pharmaceutical companies. The Simcyp Simulator is currently freely available, following completion of the training workshop, to approved members of academic institutions and other not-for-profit organizations for research and teaching purposes.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Availability material

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1157 KB)

Supplementary file2 (DOCX 1157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abduljalil, K., Pan, X., Clayton, R. et al. Fetal Physiologically Based Pharmacokinetic Models: Systems Information on Fetal Cardiac Output and Its Distribution to Different Organs during Development. Clin Pharmacokinet 60, 741–757 (2021). https://doi.org/10.1007/s40262-020-00973-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-020-00973-0

Navigation