Skip to main content
Log in

Fractional differential equations with a \(\psi \)-Hilfer fractional derivative

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a fractional differential equations involving a \(\psi \)-Hilfer fractional derivative. First, we give a correspondence between our problem and a Volterra-type integral equation. Next, sufficient conditions are given to ensure existence and uniqueness of solutions. Then, a numerical approximation method is used to approximate the solution of the problem. For an appropriate choice of the kernel \(\psi \), we recover most of all the previous results on fractional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adjabi Y, Jarad F, Baleanu D, Abdeljawad T (2016) On Cauchy problems with Caputo Hadamard fractional derivatives. J Comput Anal Appl 21(4):661–681

    MathSciNet  MATH  Google Scholar 

  • Almeida R (2020) Functional differential equations involving the \(\psi \)-Caputo fractional derivative. Fractal Fract 4:29. https://doi.org/10.3390/fractalfract4020029

  • Almeida R, Malinowska A, Odzijewicz T (2016) Fractional differential equations with dependence on the CaputoKatugampola derivative. Comput Nonlinear Dyn 11(6):061017

    Article  Google Scholar 

  • Almeida R, Malinowska A, Monteiro M (2018) Fractional differential equations with a Caputo derivative with respect to a Kernel function and their applications. Math Methods Appl Sci 41(1):336–352

    Article  MathSciNet  Google Scholar 

  • Burton T (2013) Fractional equations and a theorem of Brouwer–Schauder type. Fixed Point Theor 14(1):91–96

    Article  MathSciNet  Google Scholar 

  • de Oliveir D, de Oliveira E (2018) Hilfer–Katugampola fractional derivatives. Comput Appl Math 37:3672–3690

    Article  MathSciNet  Google Scholar 

  • Diethelm K (2010) The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type, lecture notes in mathematics. Springer, Berlin

    MATH  Google Scholar 

  • Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, North-Holland mathematics studies, vol 207. Elsevier, Amsterdam

    Google Scholar 

  • Liu S, Li H, Dai Q, Liu J (2016) Existence and uniqueness results for nonlocal integral boundary value problems for fractional differential equations. Adv Differ Equ 2016:122. https://doi.org/10.1186/s13662-016-0847-x

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa J, de Oliveira E (2018) On the \(\psi \)-Hilfer fractional derivative. Commun Nonlinear Sci Numer Simul 60:72–91

    Article  MathSciNet  Google Scholar 

  • Sousa J, de Oliveira E (2019a) Leibniz type rule: \(\psi \)-Hilfer fractional operator. Commun Nonlinear Sci Numer Simul 77:305–311

    Article  MathSciNet  Google Scholar 

  • Sousa J, de Oliveira E (2019b) A Gronwall inequality and the Cauchy-type problem by means of \(\psi \)-Hilfer operator. Differ Equ Appl 11(1):87–106

    MathSciNet  MATH  Google Scholar 

  • Sousa J, Kucche K, de Oliveira E (2019) Stability of \(\psi \)-Hilfer impulsive fractional differential equations. Appl Math Lett 88:73–80

    Article  MathSciNet  Google Scholar 

  • Sousa J, Frederico G, de Oliveira E (2020a) \(\psi \)-Hilfer pseudo-fractional operator: new results about fractional calculus. Comput Appl Math 39:254. https://doi.org/10.1007/s40314-020-01304-6

    Article  MathSciNet  MATH  Google Scholar 

  • Sousa J, Machado J, de Oliveira E (2020b) The \(\psi \)-Hilfer fractional calculus of variable order and its applications. Comput Appl Math 39:296. https://doi.org/10.1007/s40314-020-01347-9

    Article  MathSciNet  Google Scholar 

  • Yang X (2019) General fractional derivatives: theory, methods and applications. CRC Press, New York

    Book  Google Scholar 

  • Yang X (2020) On traveling-wave solutions for the scaling-law telegraph equations. Therm Sci 24(6B):3861–3868

    Article  Google Scholar 

  • Yang X, Machado J (2019) A new fractal nonlinear Burgers’ equation arising in the acoustic signals propagation. Math Methods Appl Sci 42(18):7539–7544

    Article  MathSciNet  Google Scholar 

  • Yang X, Gao F, Srivastava H (2017a) Non-differentiable exact solutions for the nonlinear ODEs defined on fractal sets. Fractals 25(4):1740002

    Article  MathSciNet  Google Scholar 

  • Yang X, Machado J, Nieto J (2017b) A new family of the local fractional PDEs. Fundamenta Informaticae 151(1–4):63–75

    Article  MathSciNet  Google Scholar 

  • Yang X, Gao F, Ju Y (2020) General fractional derivatives with applications in viscoelasticity. Academic Press, Cambridge

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael Abdelhedi.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelhedi, W. Fractional differential equations with a \(\psi \)-Hilfer fractional derivative. Comp. Appl. Math. 40, 53 (2021). https://doi.org/10.1007/s40314-021-01447-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01447-0

Keywords

Mathematics Subject Classification

Navigation