Skip to main content
Log in

A comprehensive performance comparison of linear quadratic regulator (LQR) controller, model predictive controller (MPC), \(H_{\infty }\) loop shaping and \(\mu \)-synthesis on spatial compliant link-manipulators

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Position control and mechanical vibration suppression are still open problems in compliant link mechanisms. Operation and accuracy improvements of manipulators can be made by finding solutions for these problems. This paper presents a comprehensive performance comparison between controllers (two of them robust controllers) to control position and reduce mechanical vibration over a compliant link-manipulator in a three-dimensional environment: (i) linear quadratic regulator, (ii) model predictive controller, (iii) \(H_{\infty }\) loop shaping, and (iv) \(\mu \)-synthesis. The comparisons of controllers are made based on position tracking, vibration damping and control effort in the simulation environment by taking the gravity effect into account. Finally, the paper makes a conclusion by providing some information about main purpose, advantages and disadvantages of each controller in compliant link-manipulator applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Hu C, Pané S, Nelson BJ (2018) Soft micro-and nanorobotics. Annu Rev Control Robot Auton Syst 1:53–75

    Article  Google Scholar 

  2. Watts T, Secoli R, Baena FR (2019) Modelling the deformation of biologically inspired flexible structures for needle steering. In: Rizk R, Awad M (eds) Mechanism, machine, robotics and mechatronics sciences. Springer, Berlin, pp 67–80

    Chapter  Google Scholar 

  3. Ma G, Xu M, Liu T, Luo Y (2019) The multi-body analysis and vibration control of the second-order mode of a hoop flexible structure. Acta Mech 230(4):1377–1386

    Article  MathSciNet  Google Scholar 

  4. Hoshyari S, Xu H, Knoop E, Coros S, Bächer M (2019) Vibration-minimizing motion retargeting for robotic characters. ACM Trans Gr (TOG) 38(4):102

    Google Scholar 

  5. Barjuei ES (2017) Hybrid position/force control of a spatial compliant mechanism. Int J Autom Mech Eng 14:4531–4541

    Article  Google Scholar 

  6. Bernzen W (1999) Active vibration control of flexible robots using virtual spring-damper systems. J Intell Robot Syst 24(1):69–88

    Article  Google Scholar 

  7. Marakakis K, Tairidis GK, Koutsianitis P, Stavroulakis GE (2019) Shunt piezoelectric systems for noise and vibration control: a review. Front Built Environ 5:64

    Article  Google Scholar 

  8. Mishra N, Singh S (2019) Hybrid vibration control of a two-link flexible manipulator. SN Appl Sci 1(7):715

    Article  Google Scholar 

  9. Kumar P, Pratiher B (2019) Nonlinear modeling and vibration analysis of a two-link flexible manipulator coupled with harmonically driven flexible joints. Mech Mach Theory 131:278–299

  10. Williams D, Khodoparast HH, Yang C (2018) Active vibration control of a flexible link robot with the use of piezoelectric actuators. In: MATEC web of conferences, EDP sciences, vol 148, p 11005

  11. Barjuei ES, Boscariol P, Gasparetto A, Giovagnoni M, Vidoni R (2014) Control design for 3d flexible link mechanisms using linearized models. In: Ceccarelli M, Glazunov VA (eds) Advances on theory and practice of robots and manipulators. Springer, Cham, pp 181–188

    Chapter  Google Scholar 

  12. Benosman M, Le Vey G (2004) Control of flexible manipulators: a survey. Robotica 22(5):533–545

    Article  Google Scholar 

  13. He W, Liu J (2019) Active vibration control and stability analysis of flexible beam systems. Springer, Berlin

    Book  Google Scholar 

  14. Kiang CT, Spowage A, Yoong CK (2015) Review of control and sensor system of flexible manipulator. J Intell Robot Syst 77(1):187–213

    Article  Google Scholar 

  15. Khot S, Yelve NP, Tomar R, Desai S, Vittal S (2012) Active vibration control of cantilever beam by using PID based output feedback controller. J Vib Control 18(3):366–372

    Article  MathSciNet  Google Scholar 

  16. Zhang J, He L, Wang E, Gao R (2008) A LQR controller design for active vibration control of flexible structures. In: 2008 IEEE Pacific-Asia workshop on computational intelligence and industrial application, IEEE, vol 1, pp 127–132

  17. Barjuei ES, Boscariol P, Gasparetto A, Giovagnoni M, Vidoni R (2014) Control design for 3D flexible link mechanisms using linearized models. In: Ceccarelli M, Glazunov VA (eds) Advances on theory and practice of robots and manipulators. Springer, Berlin, pp 181–188

    Chapter  Google Scholar 

  18. Ripamonti F, Orsini L, Resta F (2017) A nonlinear sliding surface in sliding mode control to reduce vibrations of a three-link flexible manipulator. J Vib Acoust 139(5):051005

    Article  Google Scholar 

  19. Zhang S, He W, Huang D (2016) Active vibration control for a flexible string system with input backlash. IET Control Theory Appl 10(7):800–805

    Article  MathSciNet  Google Scholar 

  20. Cui L, Zhang J, Gao L, Wang F (2006) A robust controller of a flexible manipulator using genetic algorithm. In: 2006 9th international conference on control, automation, robotics and vision, pp 1–4

  21. Hassan M, Dubay R, Li C, Wang R (2007) Active vibration control of a flexible one-link manipulator using a multivariable predictive controller. Mechatronics 17(6):311–323

    Article  Google Scholar 

  22. Vidoni R, Gasparetto A, Giovagnoni M (2013) Design and implementation of an ERLS-based 3-D dynamic formulation for flexible-link robots. Robot Comput Integr Manuf 29(2):273–282

    Article  Google Scholar 

  23. Levine WS (2018) The control handbook (three volume set). CRC press

  24. Shojaei Barjuei E, Gasparetto A (2015) Predictive control of spatial flexible mechanisms. Int J Mech Control 16(01):85–96

    Google Scholar 

  25. Barjuei ES, Boscariol P, Vidoni R, Gasparetto A (2016) Robust control of three-dimensional compliant mechanisms. J Dyn Syst Meas Control 138(10):101009

    Article  Google Scholar 

  26. Liu KZ, Yao Y (2016) Robust control: theory and applications. Wiley, Hoboken

    Book  Google Scholar 

  27. Abdolshah S, Barjuei ES (2015) Linear quadratic optimal controller for cable-driven parallel robots. Front Mech Eng 10(4):344–351

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers for all of their careful, constructive and insightful comments in relation to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfan Shojaei Barjuei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaei Barjuei, E., Ortiz, J. A comprehensive performance comparison of linear quadratic regulator (LQR) controller, model predictive controller (MPC), \(H_{\infty }\) loop shaping and \(\mu \)-synthesis on spatial compliant link-manipulators. Int. J. Dynam. Control 9, 121–140 (2021). https://doi.org/10.1007/s40435-020-00640-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00640-z

Keywords

Navigation