Skip to main content
Log in

Development of Design Chart for Jute Geotextiles Reinforced Low Volume Road Section by Finite Element Analysis

  • Technical Paper
  • Published:
Transportation Infrastructure Geotechnology Aims and scope Submit manuscript

Abstract

A 3D finite element (FE) analysis has been carried out to propose a design chart for Sand-Jute geotextiles-Sand (SJS) reinforced low volume road section on soft subgrade foundation. The SJS (Jute geotextile with a thin layer of sand on each side of it) layer has been placed in between the subgrade soil and the top granular layer. In the present FE analysis, nonlinear behaviour of low volume road materials has been considered. The rutting behaviour of a low volume road section with jute geotextiles reinforcement layer has been investigated. Results of the FE analysis reveal that the improvement due to jute geotextiles is more pronounced in road sections with thin top granular layer than in other sections. An attempt has also been made to study the mobilization of tensile strength of jute geotextiles under small and large rut depths. In the case of large rut depth (75 mm), it has been found that a minimum thickness of the top granular layer of 0.2 m is adequate for woven jute geotextiles with stiffness of 20 kN/m. For benefit of the practising engineers dealing with designing jute geotextiles reinforced low volume road section, a design chart has been proposed for 50-mm rut depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CAPTIF:

Canterbury accelerated pavement testing indoor facility

CBR:

California bearing ratio

CBRGL :

California bearing ratio of top granular layer

CBRSG :

California bearing ratio of subgrade soil

CVPD:

commercial vehicles per day

DJ SJS:

reinforced low volume road section after degradation of JGT

ESAL:

equivalent standard axle load

FE:

finite element

FEM:

finite element method

IRC SP:

Indian Road Congress Standard Practice

JGT:

Jute geotextiles

LVR:

low volume road

MD:

machine direction

RJ SJS:

reinforced low volume road section before degradation of JGT

SJS:

Sand-JGT-Sand

UR:

unreinforced low volume road section

UU:

unconsolidated undrained

XD:

cross-machine direction

2D:

two dimensional

3D:

three dimensional

A :

the actual area of a tyre imprint

β :

angle of internal friction for Drucker-Prager plasticity

d :

cohesion intercept for Drucker-Prager plasticity

c GL :

cohesion of top granular layer material

c u :

undrained cohesion of subgrade soil

E GL :

resilient modulus of top granular layer material

h :

thickness of top granular layer

ϕGL :

angle of internal friction of top granular layer material

M R :

resilient modulus of subgrade soil

N :

number of load repetitions of an axle load, P (kN)

N s :

number of repetitions of an axle load, Ps (kN)

P s :

equivalent static load

P :

one fourth of transient axle load

P c :

tyre contact pressure

P W :

wheel load

T MJ :

the percent utilization of JGT strength

T JUlt :

the ultimate tensile strength of the JGT

u x :

displacement in x-direction

u y :

displacement in y-direction

ϕ SG :

angle of internal friction of subgrade soil layer

σ J :

major principle stress in JGT

σ x :

maximum horizontal stress in x-direction

σ y :

maximum horizontal stress in y-direction

τ xy :

shear stress in xy-plane

References

  • AASHTO: Guide for design of pavement structures. AASHTO, Washington (1993)

    Google Scholar 

  • Abu-Farsakh, M.Y., Gu, J., Voyiadjis, G.Z., Chen, Q.: Mechanistic–empirical analysis of the results of finite element analysis on flexible pavement with geogrid base reinforcement. Int. J. Pave. Engg. 15(9), 786–798 (2014)

    Google Scholar 

  • ASTM: D5261 Standard test method for measuring mass per unit area of geotextiles. West Conshohocken, Pennsylvania (1992)

    Google Scholar 

  • ASTM D 4595: Standard test method for tensile properties of geotextiles by the wide-width strip method. West Conshohocken, Pennsylvania, USA (1986)

    Google Scholar 

  • ASTM D 5199: Standard test method for measuring the nominal thickness of geosynthetics. West Conshohocken, Pennsylvania, USA (2001)

    Google Scholar 

  • ASTM D4751: Standard test methods for determining apparent opening size of a geotextile. ASTM, West Conshohocken, Pennsylvania (1999)

    Google Scholar 

  • Basu, G., Roy, A.N., Bhattacharyya, S.K., Ghosh, S.K.: Construction of unpaved rural road using jute–synthetic blended woven geotextile—a case study. Geotext. Geomembr. 27(6), 506–512 (2009)

    Google Scholar 

  • Bhandari, A., Han, J.: Investigation of geotextile–soil interaction under a cyclic vertical load using the discrete element method. Geotext. Geomembr. 28(1), 33–43 (2010)

    Google Scholar 

  • Bowles, J.E.: Foundation analysis and design, 5th edn. McGraw-Hill Book, Singapore (1996)

    Google Scholar 

  • Cho, Y.H., McCullough, B., Weissmann, J.: Considerations on finite-element method application in pavement structural analysis. Trans. Res. Rec.J.Trans. Research Board. (1539). 96–101 (1996)

  • Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis for limit design. Q. Appl. Math. 10(2), 57–165 (1952)

    MathSciNet  MATH  Google Scholar 

  • Fannin, R.J., Sigurdsson, O.: Field observations on stabilization of unpaved roads with geosynthetics. J. Geotech. Engg. 122(7), 544–553 (1996)

    Google Scholar 

  • Garg, N., Thompson, M.: Triaxial characterization of minnesotaroad research project granular materials. Transport. Res. Rec., J. Transport. Res.Brd. (1577), 27–36 (1997)

  • Ghosh, S.K., Bhattacharyya, R., Mondal, M.M., Choudhury, P.K., Sanyal, T.: Design and development of woven jute geotextiles for potential applications in the field of geotechnical constructions. J. Text. Ins. 106(5), 550–563 (2015)

    Google Scholar 

  • Giroud, J.P., Han, J.: Design method for geogrid-reinforced unpaved roads. I. Development of design method. ASCE. J. Geotech. Geoenviron. Eng. 130(8), 775–786 (2004)

    Google Scholar 

  • Gupta, A.: Finite element analysis of granular pavements considering material nonlinearity. Asian Transport Studies. 4(3), 550–564 (2017)

    Google Scholar 

  • Gupta, A., Kumar, P., Rastogi, R.: Mechanistic–empirical approach for design of low volume pavements. Int. J. Pave. Engg. 16(9), 797–808 (2015a)

    Google Scholar 

  • Gupta, A., Kumar, P., Rastogi, R.: Critical pavement response analysis of low-volume pavements considering nonlinear behavior of materials. Transport. Research Record: J. Transport. Res. Brd. 3–11(2474), (2015b)

  • Hadi, M.N., Bodhinayake, B.C.: Non-linear finite element analysis of flexible pavements. ELSEVIER. Adv.Engg. Soft. 34(11–12), 657–662 (2003)

    Google Scholar 

  • Hausmann, M.R.: Geotextiles for unpaved roads—a review of design procedures. Geotex.Geomembr. 5(3), 201–233 (1987)

    Google Scholar 

  • Helwany, S., Dyer, J., Leidy, J.: Finite-element analyses of flexible pavements. ASCE. J. Transport. Eng. 124(5), 491–499 (1998)

    Google Scholar 

  • Hibbit, H.D., Karlsson, B.I., Sorensen, E.P. ABAQUS user manual, version 6.12. Simulia, Providence, Rhode Island, United States, (2012)

    Google Scholar 

  • Hufenus, R., Rueegger, R., Banjac, R., Mayor, P., Springman, S.M., Brönnimann, R.: Full-scale field tests on geosynthetic reinforced unpaved roads on soft subgrade. Geotext. Geomembr. 24(1), 21–37 (2006)

    Google Scholar 

  • IRC: 37 Guidelines for the design of flexible pavements. IRC, New Delhi, India (2012)

    Google Scholar 

  • IRC SP 72: Guidelines for the design of flexible pavements for low volume road. IRC, New Delhi (2015)

    Google Scholar 

  • IRC SP-20: Manual for route location, design, construction and maintenance of rural roads. IRC, New Delhi, India (2002)

    Google Scholar 

  • IS 14715 (Part 1) Jute geotextiles, strengthing of subgrade in roads: specifications. IS, New Delhi, India ( 2016 )

    Google Scholar 

  • Khan, A.J., Huq, F., Hossain, S.Z.: Application of jute geotextiles for rural road pavement construction. In: Ground improvement and geosynthetics (ASCE). Sanghai, China, pp. 370–379 (2014)

    Google Scholar 

  • Kim, M., Tutumluer, E., Kwon, J.: Nonlinear pavement foundation modeling for three-dimensional finite-element analysis of flexible pavements. ASCE. Int. J. Geomech. 9(5), 195–208 (2009)

    Google Scholar 

  • Kuo, C.M., Chou, F.J.: Development of 3-D finite element model for flexible pavements. J. Chinese Inst. Eng. 27(5), 707–717 (2004)

    Google Scholar 

  • Leng, J., Gabr, M.: Characteristics of geogrid-reinforced aggregate under cyclic load. Trans. Res. Rec. J. Trans. Res. Board. 29–35(1786), (2002)

  • Leng, J., Gabr, M.A.: Numerical analysis of stress–deformation response in reinforced unpaved road sections. Geosynth. Int. 12(2), 111–119 (2005)

    Google Scholar 

  • Loulizi, A., Al-Qadi, I.L., Elseifi, M.: Difference between in situ flexible pavement measured and calculated stresses and strains. ASCE. J. Transport. Eng. 132(7), 574–579 (2006)

    Google Scholar 

  • Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C., Bergado, D.T.: Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohyd. Polym. 82(4), 1090–1096 (2010)

    Google Scholar 

  • Midha, V.K., Joshi, S., Kumar, S.S.: Performance of chemically treated jute geotextile in unpaved roads at different in situ conditions. J. Inst.Eng. (India). Series E. 98(1), 47–54 (2017)

    Google Scholar 

  • Mosadegh, A., Nikraz, H.: Bearing capacity evaluation of footing on a layered-soil using ABAQUS. J. Earth. Sci.Clim. Change. 6(3), 264 (2015)

    Google Scholar 

  • Mulungye, R.M., Owende, P.M.O., Mellon, K.: Finite element modelling of flexible pavements on soft soil subgrades. Mat.Desig. 28(3), 739–756 (2007)

    Google Scholar 

  • Oloo, S.Y., Fredlund, D.G., Gan, J.K.: Bearing capacity of unpaved roads. Canad. Geotech. J. 34(3), 398–407 (1997)

    Google Scholar 

  • Patra, S., Bera, A.K.: Time dependent field CBR and its regression model. Int. J. Civ. Eng. Tech. 8(1), 82–88 (2017)

    Google Scholar 

  • Patra, S., Bera, A.K.: Determination of top granular layer thickness for JGT reinforced low volume rural road based on FE analysis. In: 53rdIndian Geotechnical Conference 2018, pp. 1–8. Indian Institute of Science, Bengaluru, India. pp. (TH 09_20) (2018)

  • Patra, S., Bera, A.K.: Field and numerical investigation on time-dependent behavior of jute geotextile (JGT) reinforced rural road. In: Adimoolam, B., Banerjee, S. (eds.) Soil dynamics and earthquake geotechnical engineering, vol. 15, pp. 207–216. Lecture Notes in Civil Engineering.Springer, Singapore (2019a)

    Google Scholar 

  • Patra, S., Bera, A.K.: Effect of granular layer strength and thickness on jute geotextiles reinforced rural road. In: Sundaram, R., Shahu, J., Havanagi, V. (eds.) Geotechnics for transportation infrastructure, vol. 29, pp. 435–448. Lecture Notes in Civil Engineering, Springer, Singapore (2019b)

    Google Scholar 

  • Perkins, S.W.: Constitutive modeling of geosynthetics. Geotext.Geomembr. 18(5), 273–292 (2000)

    Google Scholar 

  • Perkins, S.W., Edens, M.Q.: Finite element and distress models for geosynthetic-reinforced pavements. Int. J. Pave. Eng. 3(4), 239–250 (2002)

    Google Scholar 

  • Perkins, S.W., Christopher, B.R., Cuelho, E.L., Eiksund, G.R., Schwartz, C.S., Svanø, G.: A mechanistic–empirical model for base-reinforced flexible pavements. Int. J. Pave. Eng. 10(2), 101–114 (2009)

    Google Scholar 

  • Perkins, S.W., Christopher, B.R., Lacina, B.A., Klompmaker, J.: Mechanistic-empirical modeling of geosynthetic-reinforced unpaved roads. ASCE. Int. J.Geomech. 12(4), 370–380 (2012)

    Google Scholar 

  • Rahman, M.M., Saha, S., Hamdi, A.S.A., Alam, M.J.B.: Development of 3-D finite element models for geo-jute reinforced flexible pavement. Civ. Eng. J. 5, 437–446 (2019)

    Google Scholar 

  • Ramaswamy, S.D., Aziz, M.A.: Jute geotextiles for roads. In: Proceedings of International Workshop on Geotextile, Bangalore, India, November, 1989, vol. 1989, pp. 259–270

  • Ranganathan, S.R.: Development and potential of jute geotextiles. Geotext. Geomembr. 13(6–7), 421–433 (1994)

    Google Scholar 

  • Rao, A.S.: Jute geotextile application in Kakinada port area. In: Proceedings of National Seminar on Jute Geotextile and Innovative Jute Products. New Delhi, India (2003)

    Google Scholar 

  • Saad, B., Mitri, H., Poorooshasb, H.: Three-dimensional dynamic analysis of flexible conventional pavement foundation. ASCE. J.Trans.Eng. 131(6), 460–469 (2005)

    Google Scholar 

  • Saad, B., Mitri, H., Poorooshasb, H.: 3D FE analysis of flexible pavement with geosynthetic reinforcement. ASCE. J. Trans. Eng. 132(5), 402–415 (2006)

    Google Scholar 

  • Saha, P., Roy, D., Manna, S., Adhikari, B., Sen, R., Roy, S.: Durability of transesterified jute geotextiles. Geotext.Geomembr. 35, 69–75 (2012)

    Google Scholar 

  • Saleh, M., Steven, B., Alabaster, D.: Three-dimensional nonlinear finite element model for simulating pavement response: study at Canterbury accelerated pavement testing indoor facility, New Zealand. Transport. Res. Rec., J. Transport. Res. Board. (1823), 153–162 (2003)

  • Sanyal, T.: Jute geotextiles and their applications in civil engineering, pp. 65–87. Springer, Singapore (2017)

    Google Scholar 

  • Sarsby, R.W.: Use of ‘limited life geotextiles’ (LLGs) for basal reinforcement of embankments built on soft clay. Geotext. Geomembr. 25(4–5), 302–310 (2007)

    Google Scholar 

  • Subaida, E.A., Chandrakaran, S., Sankar, N.: Experimental investigations on tensile and pullout behaviour of woven coir geotextiles. Geotext Geomembr. 26(5), 384–392 (2008)

    Google Scholar 

  • Subaida, E.A., Chandrakaran, S., Sankar, N.: Laboratory performance of unpaved roads reinforced with woven coir geotextiles. Geotext.Geomembr. 27(3), 204–210 (2009)

    Google Scholar 

  • Taherkhani, H., Jalali, M.: Investigating the performance of geosynthetic-reinforced asphaltic pavement under various axle loads using finite-element method. Road Mat. Pave. Desg. 18(5), 1200–1217 (2017)

    Google Scholar 

  • Wathugala, G., Huang, B., Pal, S.: Numerical simulation of geosynthetic-reinforced flexible pavements. Transport. Res. Rec.: J. Transport. Res.Brd. 58–65(1534), (1996)

  • Yoo, P.J., Al-Qadi, I.L.: Effect of transient dynamic loading on flexible pavements. Transport. Res. Rec. 129–140(1990, 1), (2007)

  • Zaghloul, S.M., White, T.: Use of a three-dimensional, dynamic finite element program for analysis of flexible pavement. Transport. Res. Rec. (1388), 60–69 (1993)

Download references

Acknowledgements

The authors express their sincere gratitude to the Department of Civil Engineering, Indian Institute of Engineering Science and Technology, Shibpur, for allowing us the facility of numerical analysis and continuous support to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Kumar Bera.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, S., Bera, A.K. Development of Design Chart for Jute Geotextiles Reinforced Low Volume Road Section by Finite Element Analysis. Transp. Infrastruct. Geotech. 8, 88–113 (2021). https://doi.org/10.1007/s40515-020-00111-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40515-020-00111-0

Keywords

Navigation