Skip to main content
Log in

Recovery of Zn as ZnO from Steelmaking Waste Materials by Mechanochemical Leaching, Solvent Extraction, Precipitation, and Thermal Decomposition Route

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

A large amount of electric arc furnace dust (EAFD) is produced as hazardous waste materials during steelmaking in electric arc furnace. EAFD includes a considerable amount of zinc. Recovery of Zn as ZnO from EAFD via mechanochemical leaching, solvent extraction, precipitation, and thermal decomposition route was investigated. Dissolution behavior of Zn, Fe, Mn, Si, Mg, and Ca during the mechanochemical leaching of EAFD in H2SO4 solution was determined. Optimum mechanochemical leaching parameters were considered as 10 g of EAFD, 2 M H2SO4, 240 min of reaction time, ball to the dust weight ratio of 20, and rotational speed of 500 rpm. D2EHPA solution (20%, vv) was used for solvent extraction of Zn from mechanochemical leach solution. McCabe–Thiele diagrams constructed for extraction and stripping stages indicated that 95% of zinc in the leach solution was extracted in three stages at A:O = 1:1, while 97% of Zn was stripped from loaded organic phase at operating line of A:O = 4:1. ZnC2O4∙2H2O powder was precipitated from strip solution obtained by solvent extraction by adding oxalic acid solution at pH 4. Thermal properties of ZnC2O4·2H2O precipitated were investigated by thermogravimetric–differential thermal analysis technique. High-purity ZnO was obtained by thermal decomposition of ZnC2O4∙2H2O precipitated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. https://www.worldsteel.org/en/dam/jcr:16ad9bcd-dbf5-449f-b42c-b220952767bf/fact_raw%2520materials_2019.pdf (2019). Accessed 01 Jan 2021

  2. Donkova BV, Milenova KI, Mehandjiev DR (2008) Investigation on the catalytic activity of doped low-percentage oxide catalysts Mn/ZnO obtained from oxalate precursor. Cent Eur J Chem 6(1):115–124. https://doi.org/10.2478/s11532-007-0071-3

    Article  CAS  Google Scholar 

  3. Roudier S, Sancho LD, Remus R, Aguado-Monsonet M (2013) Best Available Techniques (BAT) reference document for iron and steel production: industrial emissions directive 2010/75/EU: integrated pollution prevention and control. Joint Research Centre (Seville site)

  4. Sofilić T, Rastovčan-Mioč A, Cerjan-Stefanović Š, Novosel-Radović V, Jenko M (2004) Characterization of steel mill electric-arc furnace dust. J Hazard Mater 109(1):59–70. https://doi.org/10.1016/j.jhazmat.2004.02.032

    Article  CAS  Google Scholar 

  5. https://www.epa.gov/sites/production/files/2016-03/documents/fr95.pdf (1991). Accessed 01 Jan 2021

  6. Madias J (2014) Chapter 1.5—electric furnace steelmaking. In: Seetharaman S (ed) Treatise on process metallurgy. Elsevier, Boston, pp 271–300. https://doi.org/10.1016/B978-0-08-096988-6.00013-4

    Chapter  Google Scholar 

  7. Souza CACd, Machado AT, Lima LRPdA, Cardoso RJC (2010) Stabilization of electric-arc furnace dust in concrete. J Mater Res 13:513–519

    Article  Google Scholar 

  8. Al-Amoudi OSB, Al-Homidy AA, Maslehuddin M, Saleh TA (2017) Method and mechanisms of soil stabilization using electric arc furnace dust. Sci Rep 7(1):46676. https://doi.org/10.1038/srep46676

    Article  Google Scholar 

  9. Montenegro V, Oustadakis P, Tsakiridis PE, Agatzini-Leonardou S (2013) Hydrometallurgical treatment of steelmaking electric arc furnace dusts (EAFD). Metall Mater Trans B 44(5):1058–1069. https://doi.org/10.1007/s11663-013-9874-0

    Article  CAS  Google Scholar 

  10. Dutra AJB, Paiva PRP, Tavares LM (2006) Alkaline leaching of zinc from electric arc furnace steel dust. Miner Eng 19(5):478–485. https://doi.org/10.1016/j.mineng.2005.08.013

    Article  CAS  Google Scholar 

  11. Creedy S, Glinin A, Matusewicz R, Hughes S, Reuter MJ (2013) Outotec® Ausmelt technology for treating zinc residues. World Metall Erzmetall 66(4):230–235

    CAS  Google Scholar 

  12. Donald JR, Pickles CA (1996) Reduction of electric arc furnace dust with solid iron powder. Can Metall Q 35(3):255–267. https://doi.org/10.1016/0008-4433(96)00009-2

    Article  Google Scholar 

  13. Chairaksa-Fujimoto R, Inoue Y, Umeda N, Itoh S, Nagasaka T (2015) New pyrometallurgical process of EAF dust treatment with CaO addition. Int J Miner Metall Mater 22(8):788–797. https://doi.org/10.1007/s12613-015-1135-6

    Article  CAS  Google Scholar 

  14. Lin X, Peng Z, Yan J, Li Z, Hwang J-Y, Zhang Y, Li G, Jiang T (2017) Pyrometallurgical recycling of electric arc furnace dust. J Clean Prod 149:1079–1100. https://doi.org/10.1016/j.jclepro.2017.02.128

    Article  CAS  Google Scholar 

  15. Jha MK, Kumar V, Singh RJ (2001) Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl 33(1):1–22. https://doi.org/10.1016/S0921-3449(00)00095-1

    Article  Google Scholar 

  16. Cruells M, Roca A, Núnẽz C (1992) Electric arc furnace flue dusts: characterization and leaching with sulphuric acid. Hydrometallurgy 31(3):213–231. https://doi.org/10.1016/0304-386X(92)90119-K

    Article  CAS  Google Scholar 

  17. Caravaca C, Cobo A, Alguacil FJ (1994) Considerations about the recycling of EAF flue dusts as source for the recovery of valuable metals by hydrometallurgical processes. Resour Conserv Recycl 10(1):35–41. https://doi.org/10.1016/0921-3449(94)90036-1

    Article  Google Scholar 

  18. Havlik T, Turzakova M, Stopic S, Friedrich B (2005) Atmospheric leaching of EAF dust with diluted sulphuric acid. Hydrometallurgy 77(1):41–50. https://doi.org/10.1016/j.hydromet.2004.10.008

    Article  CAS  Google Scholar 

  19. Díaz G, Martín D (1994) Modified Zincex process: the clean, safe and profitable solution to the zinc secondaries treatment. Resour Conserv Recycl 10(1):43–57. https://doi.org/10.1016/0921-3449(94)90037-X

    Article  Google Scholar 

  20. Nyirenda RL, Lugtmeijer AD (1993) Ammonium carbonate leaching of carbon steelmaking dust. detoxification potential and economic feasibility of a conceptual process. Miner Eng 6(7):785–797. https://doi.org/10.1016/0892-6875(93)90009-C

    Article  CAS  Google Scholar 

  21. Youcai Z, Stanforth R (2000) Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J Hazard Mater 80(1):223–240. https://doi.org/10.1016/S0304-3894(00)00305-8

    Article  CAS  Google Scholar 

  22. Orhan G (2005) Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy 78(3):236–245. https://doi.org/10.1016/j.hydromet.2005.03.002

    Article  CAS  Google Scholar 

  23. Langová Š, Leško J, Matýsek D (2009) Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 95(3):179–182. https://doi.org/10.1016/j.hydromet.2008.05.040

    Article  CAS  Google Scholar 

  24. Baik DS, Fray DJ (2000) Recovery of zinc from electric-arc furnace dust by leaching with aqueous hydrochloric acid, plating of zinc and regeneration of electrolyte. Miner Process Extract Metall 109(3):121–128. https://doi.org/10.1179/mpm.2000.109.3.121

    Article  Google Scholar 

  25. Zoraga M, Ilhan S, Kalpakli AO (2020) Leaching kinetics of electric arc furnace dust in nitric acid solutions. Int J Chem Kinet 52(12):933–942. https://doi.org/10.1002/kin.21411

    Article  CAS  Google Scholar 

  26. Xia DK, Picklesi CA (2000) Microwave caustic leaching of electric arc furnace dust. Miner Eng 13(1):79–94. https://doi.org/10.1016/S0892-6875(99)00151-X

    Article  CAS  Google Scholar 

  27. Leclerc N, Meux E, Lecuire J-M (2003) Hydrometallurgical extraction of zinc from zinc ferrites. Hydrometallurgy 70(1):175–183. https://doi.org/10.1016/S0304-386X(03)00079-3

    Article  CAS  Google Scholar 

  28. Oustadakis P, Tsakiridis PE, Katsiapi A, Agatzini-Leonardou S (2010) Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: characterization and leaching by diluted sulphuric acid. J Hazard Mater 179(1):1–7. https://doi.org/10.1016/j.jhazmat.2010.01.059

    Article  CAS  Google Scholar 

  29. Sandström Å (2016) Mechanochemical treatment in metallurgy: an overview. In: Conference in Minerals Engineering 2016: 02/02/2016–03/02/2016

  30. Baláž P (2008) Mechanochemistry in minerals engineering. Mechanochemistry in nanoscience and minerals engineering. Springer, Berlin, pp 257–296

    Book  Google Scholar 

  31. Baláž P, Aláčová A, Achimovičová M, Ficeriová J, Godočíková E (2005) Mechanochemistry in hydrometallurgy of sulphide minerals. Hydrometallurgy 77(1):9–17. https://doi.org/10.1016/j.hydromet.2004.09.009

    Article  CAS  Google Scholar 

  32. Baláž P, Baláž M, Bujňáková Z (2014) Mechanochemistry in technology: from minerals to nanomaterials and drugs. Chem Eng Technol 37(5):747–756. https://doi.org/10.1002/ceat.201300669

    Article  CAS  Google Scholar 

  33. Welham NJ (2001) Enhanced dissolution of tantalite/columbite following milling. Int J Miner Process 61(3):145–154. https://doi.org/10.1016/S0301-7516(00)00032-6

    Article  CAS  Google Scholar 

  34. Wang K, Zhang Q, He X, Hu H, Liu Y (2020) Mechanochemical leaching of Zn from low-grade smithsonite using Fe2(SO4)3 solution. Hydrometallurgy 198:105497. https://doi.org/10.1016/j.hydromet.2020.105497

    Article  CAS  Google Scholar 

  35. Baláž P, Achimovičová M (2006) Mechano-chemical leaching in hydrometallurgy of complex sulphides. Hydrometallurgy 84(1):60–68. https://doi.org/10.1016/j.hydromet.2006.04.006

    Article  CAS  Google Scholar 

  36. Chenglong Z, Youcai Z (2009) Mechanochemical leaching of sphalerite in an alkaline solution containing lead carbonate. Hydrometallurgy 100(1):56–59. https://doi.org/10.1016/j.hydromet.2009.10.004

    Article  CAS  Google Scholar 

  37. Zhao Z, Long S, Chen A, Huo G, Li H, Jia X, Chen X (2009) Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution. Hydrometallurgy 99(3):255–258. https://doi.org/10.1016/j.hydromet.2009.08.001

    Article  CAS  Google Scholar 

  38. Zhang C, Wang J, Bai J, Zhao YJ (2012) Recovering of zinc from solid waste bearing sphalerite or zinc ferrite by mechano-chemical extraction in alkaline solution. Procedia Environ Sci 16:786–790

    Article  CAS  Google Scholar 

  39. Lee K-R, Kim J, Jang J-G (2017) Recovery of zinc in spent pickling solution with oxalic acid. Korean Chem Eng Res 55(6):785–790

    CAS  Google Scholar 

  40. Deep A, de Carvalho JMR (2008) Review on the recent developments in the solvent extraction of zinc. Solvent Extr Ion Exch 26(4):375–404. https://doi.org/10.1080/07366290802179267

    Article  CAS  Google Scholar 

  41. Long H-z, Chai L-y, Qin W-q, Tang S-h (2010) Solvent extraction of zinc from zinc sulfate solution. J Central South Univ Technol 17(4):760–764. https://doi.org/10.1007/s11771-010-0553-x

    Article  CAS  Google Scholar 

  42. Jha MK, Kumar V, Singh RJ (2002) Solvent extraction of zinc from chloride solutions. Solvent Extr Ion Exch 20(3):389–405. https://doi.org/10.1081/SEI-120004812

    Article  CAS  Google Scholar 

  43. Martins JMA, Guimarães AS, Dutra AJB, Mansur MB (2020) Hydrometallurgical separation of zinc and copper from waste brass ashes using solvent extraction with D2EHPA. J Mater Res Technol 9(2):2319–2330. https://doi.org/10.1016/j.jmrt.2019.12.063

    Article  CAS  Google Scholar 

  44. Banza AN, Gock E, Kongolo K (2002) Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction. Hydrometallurgy 67(1):63–69. https://doi.org/10.1016/S0304-386X(02)00138-X

    Article  CAS  Google Scholar 

  45. Kitobo W, Gaydardzhiev S, Frenay J, Bastin D, Ndala I (2010) Separation of copper and zinc by solvent extraction during reprocessing of flotation tailings. Sep Sci Technol 45(4):535–540. https://doi.org/10.1080/01496390903529869

    Article  CAS  Google Scholar 

  46. Pereira DD, Rocha SDF, Mansur MB (2007) Recovery of zinc sulphate from industrial effluents by liquid–liquid extraction using D2EHPA (di-2-ethylhexyl phosphoric acid). Sep Purif Technol 53(1):89–96. https://doi.org/10.1016/j.seppur.2006.06.013

    Article  CAS  Google Scholar 

  47. Forrest C, Hughes MA (1978) The separation of zinc from copper by di-2-ethylhexyl phosphoric acid—an equilibrium study. Hydrometallurgy 3(4):327–342. https://doi.org/10.1016/0304-386X(78)90037-3

    Article  CAS  Google Scholar 

  48. Vahidi E, Rashchi F, Moradkhani D (2009) Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA. Miner Eng 22(2):204–206. https://doi.org/10.1016/j.mineng.2008.05.002

    Article  CAS  Google Scholar 

  49. Ahmadipour M, Rashchi F, Ghafarizadeh B, Mostoufi N (2011) Synergistic effect of D2EHPA and Cyanex 272 on separation of zinc and manganese by solvent extraction. Sep Sci Technol 46(15):2305–2312. https://doi.org/10.1080/01496395.2011.594848

    Article  CAS  Google Scholar 

  50. Kongolo K, Mwema MD, Banza AN, Gock E (2003) Cobalt and zinc recovery from copper sulphate solution by solvent extraction. Miner Eng 16(12):1371–1374. https://doi.org/10.1016/j.mineng.2003.09.001

    Article  CAS  Google Scholar 

  51. Mellah A, Benachour D (2006) The solvent extraction of zinc and cadmium from phosphoric acid solution by di-2-ethyl hexyl phosphoric acid in kerosene diluent. Chem Eng Process 45(8):684–690. https://doi.org/10.1016/j.cep.2006.02.004

    Article  CAS  Google Scholar 

  52. Asadi T, Azizi A, Lee J-c, Jahani M (2018) Solvent extraction of zinc from sulphate leaching solution of a sulphide-oxide sample using D2EHPA and Cyanex 272. J Dispers Sci Technol 39(9):1328–1334. https://doi.org/10.1080/01932691.2017.1402338

    Article  CAS  Google Scholar 

  53. Owusu G (1998) Selective extractions of Zn and Cd from ZnCdCoNi sulphate solution using di-2-ethylhexyl phosphoric acid extractant. Hydrometallurgy 47(2):205–215. https://doi.org/10.1016/S0304-386X(97)00044-3

    Article  CAS  Google Scholar 

  54. Hosseini T, Mostoufi N, Daneshpayeh M, Rashchi F (2011) Modeling and optimization of synergistic effect of Cyanex 302 and D2EHPA on separation of zinc and manganese. Hydrometallurgy 105(3):277–283. https://doi.org/10.1016/j.hydromet.2010.10.015

    Article  CAS  Google Scholar 

  55. Azizitorghabeh A, Rashchi F, Babakhani A, Noori M (2017) Synergistic extraction and separation of Fe(III) and Zn(II) using TBP and D2EHPA. Sep Sci Technol 52(3):476–486. https://doi.org/10.1080/01496395.2016.1250778

    Article  CAS  Google Scholar 

  56. Sinha MK, Sahu SK, Pramanik S, Prasad LB, Pandey BD (2016) Recovery of high value copper and zinc oxide powder from waste brass pickle liquor by solvent extraction. Hydrometallurgy 165:182–190. https://doi.org/10.1016/j.hydromet.2015.09.012

    Article  CAS  Google Scholar 

  57. Zhu Z, Cheng CY (2012) A study on zinc recovery from leach solutions using Ionquest 801 and its mixture with D2EHPA. Miner Eng 39:117–123. https://doi.org/10.1016/j.mineng.2012.07.012

    Article  CAS  Google Scholar 

  58. Sze YKP, Xue L (2003) Extraction of zinc and chromium(III) and its application to treatment of alloy electroplating wastewater. Sep Sci Technol 38(2):405–425. https://doi.org/10.1081/SS-120016582

    Article  CAS  Google Scholar 

  59. Halli P, Agarwal V, Partinen J, Lundström M (2020) Recovery of Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction. Sep Purif Technol 236:116264. https://doi.org/10.1016/j.seppur.2019.116264

    Article  CAS  Google Scholar 

  60. Barrera-Godínez JA, Sun J, O’Keefe TJ, James SE (2000) The galvanic stripping treatment of zinc residues for marketable iron product recovery. Lead-Zinc. https://doi.org/10.1002/9781118805558.ch51

    Article  Google Scholar 

  61. Sun J, O’Keefe TJ (2002) An evaluation of steel scrap as a reducing agent in the galvanic stripping of iron from D2EHPA. Miner Eng 15(3):177–185. https://doi.org/10.1016/S0892-6875(02)00004-3

    Article  CAS  Google Scholar 

  62. Verbeken K, Verhaege M, Wettinck EJ (2000) Separation of iron from a zinc sulphate electrolyte by combined liquid-liquid extraction and electro-reductive stripping, pp 779–788

  63. Lupi C, Pilone D (2000) Reductive stripping in vacuum of Fe(III) from D2EHPA. Hydrometallurgy 57(3):201–207. https://doi.org/10.1016/S0304-386X(00)00112-2

    Article  CAS  Google Scholar 

  64. Liu Y, Nam S-H, Lee MJ (2014) Stripping of Fe (III) from the loaded mixture of D2EHPA and TBP with sulfuric acid containing reducing agents. Bull Korean Chem Soc 35(7):2109–2113

    Article  CAS  Google Scholar 

  65. Tsakiridis PE, Oustadakis P, Katsiapi A, Agatzini-Leonardou S (2010) Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: downstream processing and zinc recovery by electrowinning. J Hazard Mater 179(1):8–14. https://doi.org/10.1016/j.jhazmat.2010.04.004

    Article  CAS  Google Scholar 

  66. Monhemius A, Yu X, Dougill SB (1993) Continuous hydrolytic stripping of iron from versatic acid using formic acid solutions. Elsevier, Amsterdam, pp 202–209

    Google Scholar 

  67. Free ML (2013) Hydrometallurgy: fundamentals and applications. Wiley, New York

    Book  Google Scholar 

  68. Kukurugya F, Vindt T, Havlík T (2015) Behavior of zinc, iron and calcium from electric arc furnace (EAF) dust in hydrometallurgical processing in sulfuric acid solutions: thermodynamic and kinetic aspects. Hydrometallurgy 154:20–32. https://doi.org/10.1016/j.hydromet.2015.03.008

    Article  CAS  Google Scholar 

  69. Havlík T, Souza BVE, Bernardes AM, Schneider IAH, Miškufová A (2006) Hydrometallurgical processing of carbon steel EAF dust. J Hazard Mater 135(1):311–318. https://doi.org/10.1016/j.jhazmat.2005.11.067

    Article  CAS  Google Scholar 

  70. Langová Š, Riplová J, Vallová S (2007) Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution. Hydrometallurgy 87(3):157–162. https://doi.org/10.1016/j.hydromet.2007.03.002

    Article  CAS  Google Scholar 

  71. Havlik T, Kukurugya F, Orac D, Parilak LJE (2012) Acidic leaching of EAF steelmaking dust. Erzmetall 65(1):48–56

    CAS  Google Scholar 

  72. Havlik T, Miskufova A, Turek P, Urban KI (2019) Considering the influence of calcium on EAF dust acid leaching. Physicochem Probl Miner Process. https://doi.org/10.5277/ppmp18164

    Article  Google Scholar 

  73. Cole PM, Sole KC (2003) Zinc solvent extraction in the process industries. Miner Process Extr Metall Rev 24(2):91–137. https://doi.org/10.1080/08827500306897

    Article  CAS  Google Scholar 

  74. Devi NB, Nathsarma KC, Chakravortty V (2000) Separation of divalent manganese and cobalt ions from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272. Hydrometallurgy 54(2):117–131. https://doi.org/10.1016/S0304-386X(99)00054-7

    Article  CAS  Google Scholar 

  75. Hu G, Chen D, Wang L, Liu J, Zhao H, Liu Y, Qi T, Zhang C, Yu P (2014) Extraction of vanadium from chloride solution with high concentration of iron by solvent extraction using D2EHPA. Sep Purif Technol 125:59–65. https://doi.org/10.1016/j.seppur.2014.01.031

    Article  CAS  Google Scholar 

  76. Małecka B, Drożdż-Cieśla E, Małecki A (2004) Mechanism and kinetics of thermal decomposition of zinc oxalate. Thermochim Acta 423(1):13–18. https://doi.org/10.1016/j.tca.2004.04.012

    Article  CAS  Google Scholar 

  77. Chen X, Liu X, Huang K (2019) Facile synthesis of flake-like dihydrate zinc oxalate particles. Int J Miner Metall Mater 26(2):234–240. https://doi.org/10.1007/s12613-019-1728-6

    Article  CAS  Google Scholar 

  78. McBride MB, Frenchmeyer M, Kelch SE, Aristilde L (2017) Solubility, structure, and morphology in the co-precipitation of cadmium and zinc with calcium-oxalate. J Coll Interface Sci 486:309–315. https://doi.org/10.1016/j.jcis.2016.09.079

    Article  CAS  Google Scholar 

  79. Hu C, Mi J, Shang S, Shangguan J (2014) The study of thermal decomposition kinetics of zinc oxide formation from zinc oxalate dihydrate. J Therm Anal Calorim 115(2):1119–1125. https://doi.org/10.1007/s10973-013-3438-z

    Article  CAS  Google Scholar 

  80. Shang C, Barnabé A (2013) Structural study and phase transition investigation in a simple synthesis of porous architected-ZnO nanopowder. Mater Charact 86:206–211. https://doi.org/10.1016/j.matchar.2013.10.004

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK project No: 118M376). The authors would like to thank TUBITAK for financial support. This work was also supported by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa (Project number: FDP-2018–31847).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mert Zoraga.

Ethics declarations

Conflict of interest

Mert Zoraga has received research grants from the Scientific and Technological Research Council of Turkey (TUBITAK) and Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa.

Additional information

The contributing editor for this article was Brajendra Mishra.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalpakli, A.O., Caymaz, M., Ilhan, S. et al. Recovery of Zn as ZnO from Steelmaking Waste Materials by Mechanochemical Leaching, Solvent Extraction, Precipitation, and Thermal Decomposition Route. J. Sustain. Metall. 7, 277–290 (2021). https://doi.org/10.1007/s40831-021-00340-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00340-8

Keywords

Navigation