Skip to main content

Advertisement

Log in

In vitro and in vivo antimicrobial activity of propolis extracts against various plant pathogens

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

A mixture of the isolates of Fusarium graminearum, Alternaria brassicicola, Verticillium dahliae, and Pythium ultimum was examined to determine antimicrobial activity of the extracts of water-based and alcohol-based propolis at different concentrations (10, 20, 30, 40, 50, and 60 mg/ml) according to in vitro (disk diffusion and well diffusion methods) and in vivo (seed, foliar, and seed + foliar treatments) assays. In disk diffusion and well diffusion assays, the diameter of inhibition zones at a concentration of 60 mg/ml of propolis extracts exhibited a considerable increase against all of the pathogenic isolates. For both methods, the most effective concentration of the water-based propolis extract against V. dahliae and of the alcohol-based propolis against A. brassicicola was determined to be 60 mg/ml with inhibition zones above 4.2 cm and 4.3 cm, respectively. For in vivo assays, while the seed + foliar treatment of alcohol-based propolis extract at a concentration of 60 mg/ml was determined to have the highest antimicrobial activity with an inhibition rate of 97.9% against A. brassicicola in cabbage plants, the seed + foliar treatment of water-based propolis extract at a concentration of 60 mg/ml was found to exhibit the highest antimicrobial activity with an inhibition rate of 91.6% against V. dahliae in alfalfa plants. The results verified that the propolis extracts had a high capacity, as a promising and an eco-friendly alternative against various plant pathogens, to minimize the use of chemical pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-El-Kareem F, Saied NM, El-Mohamedy RSR (2018) Seed treatment with chitosan and ethanol-extracted propolisfor suppression bean root rot disease under greenhouse conditions. J Mater Environ Sci 9(8):2356–2361

    CAS  Google Scholar 

  • Afrouzan H, Tahghighi A, Zakeri S, Es-haghi A (2018) Chemical composition and antimicrobial activities of ıranian propolis. Iran Biomed J 22(1):50

    PubMed  PubMed Central  Google Scholar 

  • Ahmed SD, Mohanad AK, Zaid NH (2008) Study antifungal activity of ethanol extract propolis against Fusarium oxysporum fungi. J Res Diyala Hum 31:93–105

    Google Scholar 

  • Al-Huqail AA, Behiry SI, Salem MZM, Ali HM, Siddiqui MH, Salem AZM (2019) Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) H. L.Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules 24:700

    Article  CAS  PubMed Central  Google Scholar 

  • Amein T, Wright S, Wikström M, Koch E, Schmitt A, Stephan D, Jahn M, Tinivella F, GullinoML FG, Werner S, van der Wolf J, Groot S (2011) Evaluation of non-chemical seed treatment methods for control of Alternaria brassicicola on cabbage seeds. J Plant Dis Plant Prot 118:214–221

    Article  Google Scholar 

  • Amini J (2015) Induced resistance in potato plants against verticillium wilt invoked by chitosan and Acibenzolar-S-methyl. Aust J Crop Sci 9(6):570–576

    CAS  Google Scholar 

  • Araujo MJAM, Bosco SMG, Sforcin JM (2016) Pythium insidiosum: inhibitory effects of propolis and geopropolis on hyphal growth. Braz J Microbiol 47:863–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aygun A (2017) Effects of propolis on eggshell. Egg Innovat and Strategies for Improvem, pp 145–146

  • Bankova V, Popova M, Bogdanov S, Sabatini AG (2002) Chemical compositionof European propolis: expected and unexpected results. Zeitschrift fürNaturforschung C 57:530–533

    Article  CAS  Google Scholar 

  • Bankova V (2005) Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol 100:114–117

    Article  CAS  PubMed  Google Scholar 

  • Basim E, Basim H, Özcan M (2006) Antibacterial activities of turkish pollen and propolis extracts against plant bacterial pathogens. J Food Eng 77:992–996

    Article  Google Scholar 

  • Belete E, Ayalewb A, Ahmed S (2013) Associations of biophysicalfactorswithfababeanroot rot (Fusarium solani) epidemics in thenortheasternhighlands of Ethiopia. CropProt 52:39–46

    Google Scholar 

  • Bettiol W (1996) Biological control of plant pathogens in Brazil: application and current research. World J Microbiol Biotechnol 12:505–510

    Article  CAS  PubMed  Google Scholar 

  • Booth C (1971) The Genus Fusarium. Com. Myc. Inst. , Kew, p 237

  • Booth C (1977) Fusarium. Laboratory Guide to the Identification of the Major Species. Commonwealth Mycological Inst. Kew, Surrey, England, p 58

  • Bosio K, Avanzini C, D’Avolio A, Ozino O, Savoia D (2000) In vitro activity of propolis against streptococcus pyogenes. Let Appl Microbiol 31:174–177

    Article  CAS  Google Scholar 

  • Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347–363

    Article  CAS  PubMed  Google Scholar 

  • Curifuta M, Vidal J, Sánchez-Venegas J, Contreras A, Salazar LA, Alvear M (2012) The in vitro antifungal evaluation of a commercial extract of Chilean propolis against six fungi of agricultural importance. Cien Inv Agr 39(2):347–359

    Article  Google Scholar 

  • Cushnie TT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26(5):343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai L, Zang C, Tian S, Liu W, Tan S, Cai Z (2015) Design, synthesis, and evaluation of caffeic acid amides as synergists to sensitize fluconazole-resistant Candida albicans to fluconazole. Bioorg Med Chem Lett 25:34–37

    Article  PubMed  Google Scholar 

  • Degraeve S, Madege RR, Audenaert K, Kamala A, Ortiz J, Kimanya M, Tiisekwa B, De Meulenaer B, Haesaert G (2016) Impact of local pre-harvest management practices in maize on the occurrence of Fusarium species and associated mycotoxins in two agro-eco systems in Tanzania. Food Cont 59:225–233

    Article  CAS  Google Scholar 

  • EFSA (European Food Safety Authority) (2018) Technical report on the outcome of the consultation with Member States and EFSA on the basic substance application for propolis extract (admissibility accepted when named water-soluble extract of propolis) for use in plant protection as fungicide and bactericide. EFSA supporting publication 2018:EN-1494. 56pp. https://doi.org/10.2903/sp.efsa.2018.EN-1494

  • El-Morsi MEA, Hassan MAE, Abo-Rehab MEA, Radwan Fatma M (2009) Incidence of root-rot and wilt disease complex of olive trees in New Valley Governorate in Egypt and its control. Assiut J Agric Sci 40(1):105–123

    Google Scholar 

  • Faria NCG, Kim JH, Gonçalves LAP, Martins M, De L, Chan KL, Campbell BC (2011) Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett Appl Microbiol 52:506–513

    Article  CAS  PubMed  Google Scholar 

  • Georgakopoulos DG, Fiddaman P, Leifert C, Malathrakis NE (2002) Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Guginski-Piva CA, Stantos ID, Junior AW (2015) Propolis for the control of powdery mildew and the induction of phytoalexins in cucumber. IDESIA (Chile) 33(1):39–47

    Article  Google Scholar 

  • Hawksworth DL, Talboys PW (1970) Verticillium dahliae. CMI Descrip Pathog Fungi Bacteria 256:1–2

    Google Scholar 

  • He M, Tian G, Semenov AM, van Bruggen AHC (2011) Shortterm fluctuations of sugar beet damping-off by Pythium ultimum in relation to changes in bacterial communities after organic amendments to two soils. Phytopathology 102:413–420

    Article  Google Scholar 

  • Hegazi AG (1998a) Propolis an overview. J Bee Inform 5:22–23

    Google Scholar 

  • Hegazi AG (1998b) Propolis an overview. J Bee Inform 6:23–28

    Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LSP, Ito SI (2018) Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Plant Pathol 19(4):870–882

    CAS  Google Scholar 

  • Joshi SM, De Britto S, Jogaiah S, Ito SI (2019) Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules 9(9):419

    Article  CAS  PubMed Central  Google Scholar 

  • Kelly AC, Ward TJ (2018) Population genomics of Fusarium graminearum reveals signatures of divergent evolution within a major cereal pathogen. PLoS ONE 13:e0194616

    Article  PubMed  PubMed Central  Google Scholar 

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62

    Article  CAS  PubMed  Google Scholar 

  • Kurt Ş, Şahinler N (2003) Propolis Ekstraktının Bitki Patojeni Funguslara Karşı Antifungal Aktivitesi. Uludağ Bee J 2:35–37

    Google Scholar 

  • La Torre A, Guccione M, Imbroglini G (1990) Indaginepreliminare sull’azione di preparati a base di propolinei confronti di Botrytis cinerea Pers della fragola. Apicoltura 6:169–177

    Google Scholar 

  • Landschoot S, Audenaert K, Waegeman W, De Baets B, Haesaert G (2013) Influence of maize-wheat rotation systems on Fusarium head blight infection and deoxynivalenol content in wheat under low versus high disease pressure. Crop Protect 52:14–21

    Article  CAS  Google Scholar 

  • Li YP, You MP, Norton S, Barbetti MJ (2016) Resistance to Pythium irregulare root and hypocotyl disease in diverse common bean (Phaseolus vulgaris) varieties from 37 countries and relationships to waterlogging tolerance and other plant and seed traits. Eur J Plant Pathol 146:147–176

    Article  CAS  Google Scholar 

  • Li ZF, Wang LF, Feng ZL, Zhao LH, Shi YQ, Zhu HQ (2014) Diversity of endophytic fungi from different Verticillium-wilt-resistant Gossypium hirsutum and evaluation of antifungal activity against Verticillium dahliae in vitro. J Microbiol Biotechnol 24:1149–1161

    Article  PubMed  Google Scholar 

  • Li ZJ, Liu M, Dawuti G, Dou Q (2017) Antifungal activity of gallic acid in vitro and in vivo. Phytother Res 31(7):1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Lima G, de Curtis F, Castoria R, Pacifica S, de Cicco V (1998) Additives and natural products against post harvest pathogens and compatibility with antagonistic yeasts. J Plant Pathol 80:259

    Google Scholar 

  • Maldonado-González MM, Bakker PA, Mercado-Blanco J (2012) Use of Arabidopsis thaliana to study mechanisms of control of Verticillium wilt by Pseudomonas fluorescens PICF7. Commun Agric Appl Biol Sci 77:23–28

    PubMed  Google Scholar 

  • Mansoori B, Smith CJ (2005) Elicitation of ethylene by Verticillium albo-atrum phytotoxins in potato. J Phytopathol 153:143–149

    Article  CAS  Google Scholar 

  • Matar SM, El-Kazzaz SA, Wagih EE, El-Diwany AI, Moustafa HE, Abo-Zaid GA, Abd–El salam HE, Hafez EE, (2009) Antagonistic and inhibitory effect of Bacillus subtilis against certain plant pathogenic fungi. I Biotechnol 8(1):53–61

    Article  Google Scholar 

  • Melliou E, Chinou I (2004) Chemical analysis and antimicrobial activity of Greek propolis. Planta Med J 70(6):515–519

    Article  CAS  Google Scholar 

  • Meneses EA, Durango DL, García CM (2009) Antifungal Activity Against Postharvest Fungi by Extracts from Colombian Propolis. Quim Nova 32:8

    Article  Google Scholar 

  • Mirzoeva OK, Grishanin RN, Calder PC (1997) Antimicrobial action of propolis and some of its components: the effects on growth, membrane potential and motility of bacteria. Microbiol Res 152(3):239–246

    Article  CAS  PubMed  Google Scholar 

  • Naseri B, Ansari Hamadani S (2017) Characteristic agro-ecological features of soil populations of bean root rot pathogens. Rhizosphere 3:203–208

    Article  Google Scholar 

  • Ngoepe EC, Straker C (2004) Propolis as a natural antimicrobial agent for control of fungal pathogens of plants. Ph.D Honours dissertation submitted to the University of the Witwatersrand, South Africa

  • Nguyen DMC, Seo DJ, Lee HB, Kim IS, Kim KY, Park RD, Jung WJ (2013) Antifungal activity of gallic acid purified from Terminalia nigrovenulosa bark against Fusarium solani. Microb Pathog 56:8–15

    Article  CAS  PubMed  Google Scholar 

  • Onaran A, Bayram M (2018) Determination of antifungal activity and phenolic compounds of endemic Muscari aucheri (Boiss.) baker extract. J Agric Faculty Gaziosmanpasa Univ 35(1):60–67

    Article  Google Scholar 

  • Özcan M, Ünver A, Ceylan DA, Yetişir R (2004) Inhibitory effect of pollen and propolis extracts. Nahrung 48(3):188–194

    Article  PubMed  Google Scholar 

  • Özdemir AE, Çandır EE, Kaplankıran M, Soylu EM, Fiahinler N, Gül A (2010) The effects of ethanol dissolved propolis on the storage of grapefruit cv. Star Ruby Turk J Agric For 34:155–162

    Google Scholar 

  • Pazin WM, Santos SND, Queiroz SCN, Bagatolli L A, Soares AEE, Melo IS, Ito AS (2019) Bioactivity and action mechanism of green propolis against Pythium aphanidermatum. Anais da Academia Brasileira de Ciências 91(2)

  • Peng L, Yang S, Cheng YJ, Chen F, Pan S, Fan G (2012) Antifungal activity and action mode of pinocembrin from propolis against Penicillium italicum. Food Sci Biotechnol 21:1533–1539

    Article  CAS  Google Scholar 

  • Pepeljnjak S, Jalsenjak I, Maysinger D (1985) Flavonoid content in propolis extracts and growth inhibition of Bacillus subtilis. Pharmazie 40:122–123

    CAS  PubMed  Google Scholar 

  • Pereira AD, Andrade SF, Oliveira Swerts MS, Maistro EL (2008) First in vivo evaluation of the mutagenic effect of Brazilian green propolis by comet assay and micronucleus test. Food Chem Toxicol 46:2580–2584

    Article  CAS  PubMed  Google Scholar 

  • Sabry S, Ali AZ, Abdel-Kader DA, Abou-Zaid MI (2015) Control of cabbage alternaria leaf spot disease caused by Alternaria brassicicola. Zagazig Jour of Plant Pathol 42(5).

  • Sanzani SM, De Girolamo A, Schena L, Solfrizzo M, Ippolito A, Visconti A (2009) Control of Penicillium expansum and patulin accumulation on apples by quercetin and umbelliferone. Eur Food Res Technol 228(3):381–389

    Article  CAS  Google Scholar 

  • Satapute P, Kamble MV, Adhikari SS, Jogaiah S (2019) Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Sci Total Environ 651:2334–2344

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JO, Buchmann SL (1992) Other products of the hive. In: Graham JM (ed) The hive and the honey bee. Dadant & Sons, Hamilton, pp 928–977

    Google Scholar 

  • Shetty KG, Subbarao KV, Huisman OC, Hubbard JC (2000) Mechanism of broccoli-mediated Verticillium wilt reduction in cauliflower. Phytopathology 90:305–310

    Article  CAS  PubMed  Google Scholar 

  • Shrestha SK, Munk L, Mathur SB (2005) Role of weather on Alternaria Leaf Blight Disease and its effect on Yield and Yield Components of Mustard. Nepal Agric Res J 6:62–72

    Article  Google Scholar 

  • Subbarao KV, Kabir Z, Martin FN, Koike ST (2007) Management of soilborne diseases in strawberry using vegetable rotations. Plant Dis 91:964–972

    Article  CAS  PubMed  Google Scholar 

  • Şahinler N, Kaftanoğlu O (2005) The Effects of season and honeybee (Apis mellifera L.) genotype on acceptance rates and royal jelly production. Turk J Vet Anim Sci 29:499–503

    Google Scholar 

  • Topps JH, Wain RL (1957) Investigation on fungicides. III. The fungi toxicity of 3- and 5- alkyl salicylanilide and P-chloronilines. Ann Appl Biol 45(3):506–511

    Article  CAS  Google Scholar 

  • Tosi B, Donini A, Romagnoli C, Bruni A (1996) Antimicrobial activity of some Commercial Extracts of Propolis Prepared with different solvents. Phytother Res 10:335–336

    Article  Google Scholar 

  • Toussoun TA, Nelson PE (1995) A Pictorial Guide to the Identification of Fusarium Species Fusarium. The Pennsylvania State University Press, University Park and London p, p 43

    Google Scholar 

  • Van der Plaats-Niterink AJ (1981) Monograph of the genus Pythium. Stud Mycol 21:1–244

    Google Scholar 

  • Vatchev T, Hadjidimitrov B (2006) Application of fungicides to control crown and root rot disease complex of greenhouse-grown tomatoes. Plant Sci 43:331–339

    CAS  Google Scholar 

  • Verma PR, Saharan GS (1994) Alternaria Diseases of Crucifers. Research Branch Agriculture and Agri-Food Canada Techn Bulle 6E, p 162

  • Verma N, Verma S (2010) Alternaria diseases of Vegetable Crops and New Approaches for its Control Botany Department, Feroze Gandhi College, Rae Bareli—229001. Asian J Exp Biol Sci 1:681–692

    Google Scholar 

  • Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with diff erent plant pathogens. Lett Appl Microbiol 48(6):705–711

    CAS  PubMed  Google Scholar 

  • Widmer TL, Laurent N (2006) Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. Eur J Plant Pathol 115(4):377–388

    Article  CAS  Google Scholar 

  • Woudenberg JHC, Groenewald JZ, Binder M, Crous PW (2013) Alternaria redefined. Stud Mycol 75:171–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woudenberg JH, Seidl MF, Groenewald JZ, de Vries M, Stielow JB, Thomma BP, Crous PW (2015) Alternaria section Alternaria: species, formae speciales or pathotypes. Stud Mycol 82:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanar Y, Yanar D, Arslan S (2005) Antifungal activity of turkish propolis against phytophthora species. Plant Pathol J 4(1):48–60

    Google Scholar 

  • Zhang M, Xu L, Zhang L, Guo Y, Qi X, He L (2018) Effects of quercetin on postharvest blue mold control in kiwifruit. Sci Hortic 228:18–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Julia SAHRAN and Burcu Akal for giving language support and useful comments.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesim Er.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, Y. In vitro and in vivo antimicrobial activity of propolis extracts against various plant pathogens. J Plant Dis Prot 128, 693–701 (2021). https://doi.org/10.1007/s41348-021-00437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-021-00437-y

Keywords

Navigation