Skip to main content
Log in

Enhanced Solubility and One-Step Purification of Functional Dimeric Carboxypeptidase G2

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Carboxypeptidase G2 is a bacterial enzyme that catalyzes methotrexate conversion to its inactive forms which are then eliminated via a non-renal pathway in patients with renal disorders during a high-dose methotrexate administration. Due to the increasing demand of this enzyme, it was of interest to simplify its production process. For this reason, we developed a method for production and one-step purification of this enzyme using an intein-mediated system with a chitin-binding affinity tag. The carboxypeptidase G2 gene from Pseudomonas RS16 was optimized, synthesized, cloned into the pTXB1 expression vector and finally transformed into Escherichia coli BL21 (DE3) cells. The optimal condition for the enzyme soluble expression was achieved in 2×YT medium containing 1% glucose at 25°C for 30 h with 0.5 mM IPTG. The enzyme without intein was expressed as inclusion bodies indicating the importance of intein for the protein solubility. The expressed homodimer protein was purified to homogeneity on a chitin affinity column. The Km and kcat values of 6.5 µM and 4.57 s–1, respectively, were obtained for the purified enzyme. Gel filtration analysis indicated that the resulting recombinant protein was a dimer of 83 kDa. Fluorescence and circular dichroism spectroscopy confirmed the enzyme tertiary and secondary structures, respectively. The use of intein-mediated system provided the possibility of the one-step carboxypeptidase G2 purification, paving the way to the application of this enzyme in pharmaceutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Rowsell, S., Pauptit, R. A., Tucker, A. D., Melton, R. G., Blow, D. M., and Brick, P. (1997) Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy, Structure, 5, 337-347, https://doi.org/10.1016/S0969-2126(97)00191-3.

    Article  CAS  PubMed  Google Scholar 

  2. Goda, S. K., Rashidi, F. A. B., Fakharo, A. A., and Al-Obaidli, A. (2009) Functional overexpression and purification of a codon optimized synthetic glucarpidase (Carboxypeptidase G2) in Escherichia coli, Protein J., 28, 435-442, https://doi.org/10.1016/J.ENZMICTEC.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  3. Ramsey, L. B., Balis, F. M., O’Brien, M. M., Schmiegelow, K., Pauley, J. L., et al. (2018) Consensus guideline for use of glucarpidase in patients with high-dose methotrexate induced acute kidney injury and delayed methotrexate clearance, Oncologist, 23, 52-61.

    Article  CAS  Google Scholar 

  4. Rattu, M. A., Shah, N., Lee, J. M., Pham, A. Q., and Marzella, N. (2013) Glucarpidase (voraxaze), a carboxypeptidase enzyme for methotrexate toxicity, P T, 38, 732-744.

    PubMed  PubMed Central  Google Scholar 

  5. Wingfield, P. T. (2015) Overview of the purification of recombinant proteins, Curr. Protoc. Protein Sci., 80, 6.1.1-6.1.35, https://doi.org/10.1002/0471140864.ps0601s80.

    Article  Google Scholar 

  6. Rosano, G. L., and Ceccarelli, E. A. (2014) Recombinant protein expression in Escherichia coli: advances and challenges, Front. Microbiol., 5, 172, https://doi.org/10.3389/fmicb.2014.00172.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goh, H. C., Sobota, R. M., Ghadessy, F. J., and Nirantar, S. (2017) Going native: Complete removal of protein purification affinity tags by simple modification of existing tags and proteases, Protein Expr. Purif., 129, 18-24, https://doi.org/10.1016/J.PEP.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y. (2011) Self-cleaving fusion tags for recombinant protein production, Biotechnol. Lett., 33, 869-881, https://doi.org/10.1007/s10529-011-0533-8.

    Article  CAS  PubMed  Google Scholar 

  9. Fan, Y., Miozzi, J. M., Stimple, S. D., Han, T. C., and Wood, D. W. (2018) Column-free purification methods for recombinant proteins using self-cleaving aggregating tags, Polymers (Basel), 10, 468, https://doi.org/10.3390/polym10050468.

    Article  CAS  Google Scholar 

  10. Wu, W. Y., Mee, C., Califano, F., Banki, R., and Wood, D. W. (2006) Recombinant protein purification by self-cleaving aggregation tag, Nat. Protoc., 1, 2257-2262, https://doi.org/10.1038/nprot.2006.314.

    Article  CAS  PubMed  Google Scholar 

  11. Arnau, J., Lauritzen, C., Petersen, G. E., and Pedersen, J. (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins, Protein Expr. Purif., 48, 1-13, https://doi.org/10.1016/J.PEP.2005.12.002.

    Article  CAS  PubMed  Google Scholar 

  12. Belfort, M., Stoddard, B. L., Wood, D. W., and Derbyshire, V. (2006). Homing endonucleases and inteins, Springer Science & Business Media.

  13. Banki, R., and Wood, D. W. (2005) Inteins and affinity resin substitutes for protein purification and scale up, Microb. Cell Fact., 4, 1-6, https://doi.org/10.1186/1475-2859-4-32.

    Article  CAS  Google Scholar 

  14. Lahiry, A., Fan, Y., Stimple, S. D., Raith, M., and Wood, D. W. (2018) Inteins as tools for tagless and traceless protein purification, J. Chem. Technol. Biotechnol., 93, 1827-1835, https://doi.org/10.1002/jctb.5415.

    Article  CAS  Google Scholar 

  15. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680.

    Article  CAS  Google Scholar 

  16. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254.

    Article  CAS  Google Scholar 

  17. Rashidi, F. B., AlQhatani, A. D., Bashraheel, S. S., Shaabani, S., Groves, M. R., et al. (2018) Isolation and molecular characterization of novel glucarpidases: enzymes to improve the antibody directed enzyme pro-drug therapy for cancer treatment, PLoS One, 13, e0196254, https://doi.org/10.1371/journal.pone.0196254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. AlQahtani, A. D, Al-Mansoori, L., Bashraheel, S. S., Rashidi, F. B., Al-Yafei, A., et al. (2019) Production of “biobetter” glucarpidase variants to improve drug detoxification and antibody directed enzyme prodrug therapy for cancer treatment, Eur. J. Pharm. >Sci., 127, 79-91, https://doi.org/10.1016/J.EJPS.2018.10.014.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, L, Kang, J. H., Kim, K. H., and Leeb, E. K. (2009) Expression of intein-tagged fusion protein and its applications in downstream processing, J. Chem. Technol. Biotechnol., 85, 11-18, https://doi.org/10.1002/jctb.2277.

    Article  CAS  Google Scholar 

  20. Fong, B. A., Wu, W. Y., and Wood, D. W. (2010) The potential role of self-cleaving purification tags in commercial-scale processes, Trends Biotechnol., 28, 272-279, https://doi.org/10.1016/j.tibtech.2010.02.003.

    Article  CAS  PubMed  Google Scholar 

  21. Yachnin, B. J., and Khare, S. D. (2017) Engineering carboxypeptidase G2 circular permutations for the design of an autoinhibited enzyme, Protein Eng. Des., 30, 321-331, https://doi.org/10.1093/protein/gzx005.

    Article  CAS  Google Scholar 

  22. Alishah, K., Asad, S., Khajeh, K., and Akbari, N. (2016) Utilizing intein-mediated protein cleaving for purification of uricase, a multimeric enzyme, Enzyme Microb. Technol., 93-94, 92-98, https://doi.org/10.1016/J.Enzmictec.2016.08.001.

    Article  CAS  PubMed  Google Scholar 

  23. Wood, D. W., Derbyshire, V., Wu, W., Chartrain, M., Belfort, M., and Belfort, G. (2000) Optimized single-step affinity purification with a self-cleaving intein applied to human acidic fibroblast growth factor, Biotechnol. Prog., 16, 1055-1063, https://doi.org/10.1021/bp0000858.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma, S. S., Chong, S., and Harcum, S. W. (2006) Intein-mediated protein purification of fusion proteins expressed under high-cell density conditions in E. coli, J. Biotechnol., 125, 48-56, https://doi.org/10.1016/j.jbiotec.2006.01.018.

    Article  CAS  PubMed  Google Scholar 

  25. Díaz, M., Venturini, E., Marchetti, S., Arenas, G., and Marshall, S. H. (2012) Intein-mediated expression of cecropin in Escherichia coli, Electron. J. Biotechnol., 15, 1-10.

    Google Scholar 

  26. Sherwood, R. F, Melton, R. G., Alwan, S. M., and Hughes, P. (1985) Purification and properties of carboxypeptidase G2 from Pseudomonas sp. strain RS-16, Eur. J. Biochem., 148, 447-453, https://doi.org/10.1111/j.1432-1033.1985.tb08860.x.

    Article  CAS  PubMed  Google Scholar 

  27. Minton, N. P., Atkinson, T., and Sherwood, R. F. (1983) Molecular cloning of the Pseudomonas carboxypeptidase G2 gene and its expression in Escherichia coli and Pseudomonas putida, J. Bacteriol., 156, 1222-1227.

    Article  CAS  Google Scholar 

  28. Jeyaharan, D., Aston, P., Garcia-Perez, A., Schouten, J., Davis, P., and Dixon, A. M. (2016) Soluble expression, purification and functional characterisation of carboxypeptidase G2 and its individual domains, Protein Expr. Purif., 127, 44-52, https://doi.org/10.1016/J.PEP.2016.06.015.

    Article  CAS  PubMed  Google Scholar 

  29. Agostini, F., Cirillo, D., Livi, C. M., DelliPonti, R., and Tartaglia, G. G. (2014) ccSOL omics: a webserver for solubility prediction of endogenous and heterologous expression in Escherichia coli, Bioinformatics, 30, 2975-2977, https://doi.org/10.1093/bioinformatics/btu420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., and Warwicker, J. (2017) Protein-Sol: a web tool for predicting protein solubility from sequence, Bioinformatics, 33, 3098-3100, https://doi.org/10.1093/bioinformatics/btx345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate the Research Council of Tarbiat Modares University, Prof. Khosro Khajeh, and Iran National Institute for Medical Research Development (NIMAD, project 940711) for their financial support through this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahareh Dabirmanesh.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with the involvement of humans or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodakarami, A., Dabirmanesh, B., Asad, S. et al. Enhanced Solubility and One-Step Purification of Functional Dimeric Carboxypeptidase G2. Biochemistry Moscow 86, 190–196 (2021). https://doi.org/10.1134/S0006297921020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921020073

Keywords

Navigation