Skip to main content
Log in

Estimating Bubble Shape Behavior from Underwater Combustion of Pyrotechnic Mixtures

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

In this study, the AutoCAD technique is applied to estimate the bubble shape, which originates from the underwater combustion of pyrotechnic mixtures. To validate the method two verifying techniques are used. First, the calculations according to mathematical formulas and the AutoCAD technique are compared with respect to the examples of the area and girth of the one yuan coin and the dodecagon. Second, the area and girth of the bubbles are calculated using the AutoCAD technique and the calculation method provided by the reference, respectively, and then the calculated results are also compared. The results of the comparison of the areas and girths show that they are all in good agreement with each other. Hence, the AutoCAD technique provides a new way for estimating the bubble shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. G. P. Pan and S. Yang, Principles of Pyrotechnics (Beijing University of Science & Technique Press, 1997) [in Chinese].

    Google Scholar 

  2. A. Massimo, “Anti-torpedo defense systems,” Military Technique No. 10, 10–16 (1995).

    Google Scholar 

  3. D. H. Ouyang, H. Guan, G. P. Pan, X. F. Du, L. Fan, and H. P. Lv, “Study on the bubble and noise of exit from pyrotechnic composition combustion underwater base on high speed photography,” Acta Acustica 35(6), 641–645 (2010) [in Chinese].

    Google Scholar 

  4. D. H. Ouyang, H. Guan, G. P. Pan, and X. F. Du, “Mechanism and experimental research on acoustic radiation of pyrotechnic composition combustion underwater,” J. Exp. Fluid Mech. 24(5), 74–78 (2010) [in Chinese].

    Google Scholar 

  5. D. Ross, Mechanics of underwater noise (Pergamon, New York, 1976).

    Google Scholar 

  6. W. Abbassi, S. Besbes, M. El Hajem, H. Ben Aissia, J. Y. Champagne, and J. Jay, “Influence of operating conditions and liquid phase viscosity with volume of fluid method on bubble formation process,” European J. Mechanics B/Fluids 65, 284–298 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Li, H. Guan, D. M. Song, Q. Wang, and J. Du, “Experimental study on bubble movement characteristics during underwater pyrotechnic combustion,” Flow Turbulence and Combustion 93(2), 249–258 (2014).

    Article  Google Scholar 

  8. D. H. Ouyang, D. L. Duan, and Y. X. Zou, “Effects of various additives on the characteristic of bubbles originating from the combustion of pyrotechnic mixtures”, Central European Journal of Energetic Materials, 11(4), 603–611 (2014).

    Google Scholar 

  9. D. H. Ouyang, Q. T. Zhang, and F. Wang, “Experimental and numerical investigation of effects of charge density on the bubble characteristics originating from the combustion of pyrotechnic mixtures,” Flow Turbulence and Combustion 97(3), 865–874 (2016).

    Article  Google Scholar 

  10. Kazuhiro Kaiho, Tomio Okawa, and Koji Enoki, “Measurement of the maximum bubble size distribution in water subcooled flow boiling at low pressure,” Intern. J. Heat Mass Transfer 108, 2365–2380 (2017).

    Article  Google Scholar 

  11. I. Murgan, F. Bunea, and G. D. Ciocan, “Experimental PIV and LIF characterization of a bubble column flow,” Flow Measurement & Instrumentation 54, 224–235 (2017).

    Article  Google Scholar 

  12. O. E. Ivashnev, M. N. Ivashneva, and N. N. Smirnov, “Rarefaction waves in non-equilibrium boiling fluid flows,” Fluid Dynamics 35(4), 485–495 (2000).

    Article  ADS  Google Scholar 

  13. O. E. Ivashnyov, M. N. Ivashneva, and N. N. Smirnov, “Slow waves of boiling under hot water depressurization,” J. Fluid Mech. 413, 149–180 (2000).

    Article  ADS  Google Scholar 

  14. O. E. Ivashnev and N. N. Smirnov, “Thermal growth of a vapor bubble moving in a superheated liquid,” Fluid Dynamics 39(3), 414–428 (2004).

    Article  ADS  Google Scholar 

  15. Geng Li, Bin-bin Wang, Hui-jie Wu, and S. F. DiMarco, “Impact of bubble size on the integral characteristics of bubble plumes in quiescent and unstratified water,” Intern. J. Multiphase Flow (2020); https://doi.org/10.1016/j.ijmultiphaseflow.2020.103230.

  16. L. Santana, R. Guadagnin, C. L. D. Reis, J. M. Cavalcante, et al., “Area evaluation using image processing tools: An applied study to pressure ulcer monitoring,” Pattern Recognition and Image Analysis. 20(2), 220–224 (2010).

    Article  Google Scholar 

  17. E. Rico-García, F. Hernández-Hernández, G. Soto-Zarazúa, and G. Herrera-Ruiz, “Two new methods for the estimation of leaf area using digital photography,” Int. J. Agric. Biol. 11(4), 397–400 (2009).

    Google Scholar 

  18. C. A. M. Almeida, S. A. Schellini, E. A. Gregório, and C. H. Pellizzon, “Utilização do AutoCAD 2004 para quantificação de pesquisas usando fotomicrografias eletrónicas,”Revista Brasileira Oftalmologia 66(4), 227–230 (2007).

    Article  Google Scholar 

  19. S. Das, Y. Morsi, G. Brooks, et al. “Experimental Investigation of single bubble characteristics in a cold model of a Hall- Héroult electrolytic cell,” TMS Light Metals, pp. 575–580 (2001).

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51506222), the Natural Science Foundation of Shanxi Province (No. 2016JQ5085) and the grant from the Engineering University of Chinese Armed Police Force (Grant No. WJY201510).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ouyang Di-hua or Zhang Qian-tao.

Ethics declarations

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di-hua, O., Qian-tao, Z. & San-xue, G. Estimating Bubble Shape Behavior from Underwater Combustion of Pyrotechnic Mixtures. Fluid Dyn 56, 10–17 (2021). https://doi.org/10.1134/S0015462821010109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821010109

Keywords:

Navigation