Skip to main content
Log in

Formation of the Moon and the Earth from a common supraplanetary gas-dust cloud (lecture presented at the XIX all-Russia symposium on isotope geochemistry on November 16, 2010)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A hypothesis is proposed on the formation of the Earth and the Moon from a large-scale gas-dust cloud, the size of which is limited by the Hill radius, i.e., approximately one million kilometers. The compression of the supraplanetary gas-dust cloud resulted in an adiabatic temperature increase in its interior parts and evaporation of volatiles, including iron, from the surface of particles. At a certain stage, within 50–70 Ma after solar system formation, the supraplanetary gas-dust disk was fragmented, the Moon was separated, and the Earth embryo was formed. The remaining part of the gas-dust material was accreted mainly to the Earth. During this process, the gas dominated by primordial hydrogen was squeezed out of the disk. Vapor was removed together with hydrogen from the interparticle space. The hydrodynamic lifting resulted in the loss of volatiles, including Rb, Xe, and Pb, which is reflected in the Rb-Sr, Xe-I-Pu, and U-Pb isotopic systems. The gas-dust accretion was accomplished within 110–130 Ma (most likely, ∼120 Ma) after the beginning of solar system formation. Since then, the hydrodynamic lifting and volatile loss have ceased, and the history of the Earth as a condensed body has started.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Adushkin, A. V. Vityazev, and G. V. Pechernikova, “Contribution to the Theory of the Origin and Evolution of the Earth,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 275–296 [in Russian].

    Google Scholar 

  2. C. Alibert, M. D. Norman, and M. T. McCulloch, “An Ancient Sm-Nd Age for a Ferroan Noritic Anorthosite Clast from Lunar Breccia 67016,” Geochim. Cosmochim. Acta 58, 2921–2926 (1994).

    Article  Google Scholar 

  3. C. J. Allègre, G. Manhes, and C. Göpel, “The Age of the Earth,” Geochim. Cosmochim. Acta 59, 1445–1456 (1995).

    Article  Google Scholar 

  4. C. J. Allègre, G. Manhes, and C. Göpel, “The Major Differentiation of the Earth at 4.45 Ga,” Earth Planet. Sci. Lett. 267, 368–398 (2008).

    Article  Google Scholar 

  5. Y. Amelin, A. N. Krot, I. D. Hutcheon, and A. A. Ulyanov, “Pb Isotopic Ages of Chondrules and Ca, Al-Rich Inclusions,” Science 297, 1678–1683 (2002).

    Article  Google Scholar 

  6. E. Anders and N. Grevesse, “Abundances of the Elements: Meteoritic and Solar,” Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  Google Scholar 

  7. E. Belbruno and J. R. Gott, “Where Did the Moon Come from?,” Astronom. J. 129, 1724–1745 (2005).

    Article  Google Scholar 

  8. L. E. Borg, M. Norman, L. Nyquist, D. Bogard, G. Snyder, L. Taylor, and M. Lindstrom, “Isotopic Studies of Ferroan Anorthosite 62236: A Young Lunar Crustal Rock from a Light-Rare-Earth-Element Depleted Source,” Geochim. Cosmochim Acta 63, 2679–2691 (1999).

    Article  Google Scholar 

  9. A. Bouvier, M. Wadhwa, and P. Janney, “Pb-Pb Isotope Systematics in an Allende Chondrule,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A104.

  10. A. G. W. Cameron and W. Ward, “The Origin of the Moon,” Proc. 7th. Lunar. Conf. 120–122 (1976).

  11. R. M. Canap, “Simulations of a Late Lunar Forming Impact,” Icarus 168, 433–456 (2004).

    Article  Google Scholar 

  12. R. M. Canap and E. Asphaug, “Origin of the Moon in a Giant Impact near the End of the Earth’s Formation,” Nature 41(6848), 708–712 (2001).

    Article  Google Scholar 

  13. R. M. Canap and L. W. Esposito, “Accretion of the Moon from an Impact-Generated Disk,” Icarus 119, 427–446 (1996).

    Article  Google Scholar 

  14. R. W. Carlson and G. W. Lugmair, “The Age of Ferroan Anorthosite 60025: Oldest Crust on a Young Moon?” Earth Planet. Sci. Lett. 90, 119–130 (1988).

    Article  Google Scholar 

  15. R. W. Carlson and G. W. Lugmair, “Timescales of Planetesimal Formation and Differentiation Based on Extinct and Extant Radioisotopes,” in “Origin of the Earth and Moon,” Ed. by R. M. Canap and K. Righter (Univ. Arizona, 2000), pp. 25–44.

  16. J. E. Chambers, “Planetary Accretion in the Inner Solar System,” Earth Planet. Sci. Lett. 223, 241–252 (2004).

    Article  Google Scholar 

  17. G. De Maria, G. Balducci, M. Guido, and V. Piacente, “Mass Spectrometric Investigation of the Vaporization Process of Apollo 12 Lunar Samples,” Proc. 2nd Lunar. Conf. 2, 1367–1380. (1971).

    Google Scholar 

  18. T. M. Eneev, “New Accumulation Model of Planet Formation and the Structure of the Outer Areas of the Solar System,” Preprint No. 166 (Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 1979) [in Russian].

    Google Scholar 

  19. E. M. Galimov, “Several Consideration on the Early History of the Earth,” in From Mantle to Meteorites, Ed. by K. Gopalan et al., (Ind. Ac. Sci., Bangalore, 1990), pp. 177–188.

    Google Scholar 

  20. E. M. Galimov, “Problem of the Moon Origin,” in Main Directions in Geochemistry, Ed. by E. M. Galimov (URSS, Moscow, 1995) [in Russian].

    Google Scholar 

  21. E. M. Galimov, “On the Origin of Lunar Material,” Geokhimiya, No. 7, 691–706 (2004) [Geochem. Int. 43, 595–609 (2004)].

  22. E. M. Galimov, “Present-Day State of the Problem of the Origin of the Earth-Moon System,” in Problems of the Origin and Evolution of the Biosphere Ed. by E. M. Galimov (URSS, Moscow, 2008) [in Russian].

    Google Scholar 

  23. E. M. Galimov, S. D. Kulikov, R. S. Kremnev, Yu. A. Surkov, and O. B. Khavroshkin, “The Russian Lunar Exploration Project,” Solar Syst. Res. 33(5), 327–337 (1999).

    Google Scholar 

  24. E. M. Galimov, A. M. Krivtsov, A. V. Zabrodin, et al., “Dynamic Model for the Formation of the Earth-Moon System,” Geokhimiya, No. 11, 1139–1150 (2005) [Geochem. Int. 43, 1045–1055 (2005)].

  25. P. Goldreich and W. R. Ward, “The Formation of Planetesimals,” Astrophys. J. 183(3), 1057–1061 (1973).

    Google Scholar 

  26. N. Grevese and A. J. Sauval, “Standard Solar Composition,” in “Solar Composition and Evolution-from Core to Corona,” Ed. by C. Frohlich, M. C. E. Huber, and S. K. Solanki, Space Sci. Rev. 85, 161–174 (1998).

  27. L. Grossman and J. W. Larimer, “Early Chemical History of the Solar System,” Rev. Geophys. Sp. Phys. 12, 71–101 (1974).

    Article  Google Scholar 

  28. L. E. Gurevich and A. I. Lebedinskii, “Formation of Planets,” Izv. Akad. Nauk SSSR, Ser. Fiz. 14(6), 765–775 (1950).

    Google Scholar 

  29. K. E. Haisch, E. A. Loda, and C. L. Loda, “Disk Frequencies and Life-Times in Young Clusters,” Astrophys. J. 553, L153–L156 (2001).

    Article  Google Scholar 

  30. A. N. Halliday, “A Young Moon-Forming Giant Impact at 70–110 Million Years Accompanied by Late-Stage Mixing, Core Formation and Degassing of the Earth,” Phil. Trans. R. Soc. London A366, 4163–4181 (2008).

    Google Scholar 

  31. A. N. Halliday and D.-C. Lee, “Tungsten Isotopes and the Early Development of the Earth and Moon,” Geochim. Cosmochim. Acta 63, 4157–4179 (1999).

    Article  Google Scholar 

  32. A. N. Halliday and D. Porcelly, “In Search of Lost Planets-the Paleocosmochemistry of the Inner Solar System,” Earth Planet. Sci. Lett. 192, 545–559 (2001).

    Article  Google Scholar 

  33. B. B. Hanan and G. R. Tilton, “60025: Relict of Primitive Lunar Crust?” Earth Planet. Sci. Lett. 84, 15–21 (1987).

    Article  Google Scholar 

  34. A. W. Harris and A. Kaula, “Coaccretional Model of Satellite Formation,” Icarus 24, 516–524 (1975).

    Article  Google Scholar 

  35. W. K. Hartmann and D. R. Davis, “Satellite-Sized Planetesimals and Lunar Origin,” Icarus 24, 504–515. (1975)

    Article  Google Scholar 

  36. A. Hashimoto, “Evaporation Metamorphism in the Early Solar Nebula-Evaporation Experiments on the Melt FeO-MgO-SiO2-CaO-Al2O3 and Chemical Fractionations of Primitive Materials,” Geochem. J. 17, 111–145 (1983).

    Google Scholar 

  37. R. W. Hockney and J. W. Eastwood, Computer Simulation using Particles (Inst. Phys. Adam Hilger, Bristol, 1988).

    Book  Google Scholar 

  38. M. F. Horan, M. L. Smoltar, and R. J. Walker, “W-182 and Re-187-Os-187 Systematics of Iron Meteorites: Chronology for Melting, Differentiation, and Crystallization in Asteroids,” Geochim. Cosmochim. Acta 62, 545–554 (1998).

    Article  Google Scholar 

  39. M. Humayun and P. Cassen, “Processes Determining the Volatile Abundances of the Meteorites and Terrestrial Planets,” in Origin of the Earth and Moon, Ed. by R. M. Canap and K. Righter (Univ. Arizona, 2000), pp. 3–24.

  40. M. Humayun and R. N. Clayton, “Precise Determination of the Isotopic Composition of Potassium: Application to Terrestrial Rocks and Lunar Soils,” Geochim. Cosmochim. Acta 59, 2115–2130 (1995).

    Article  Google Scholar 

  41. D. M. Hunten, R. O. Pepin, and J. C. G. Walker, “Mass Fractionation in Hydrodynamic Escape,” Icarus 69, 532–549 (1987).

    Article  Google Scholar 

  42. J. H. Jones and M. J. Drake “Geochemical Constraints on Core Formation in the Earth,” Nature 322, 221–228 (1986).

    Article  Google Scholar 

  43. E. K. Kazenas and Yu. V. Tsvetkov, Thermodynamics of Oxide Evaporation (LKI, Moscow, 2008) [in Russian].

    Google Scholar 

  44. T. Kleine, H. Palme, K. Mezger, and A. N. Halliday, “Hf-W Chronology of Lunar Metal and the Age and Early Differentiation of the Moon,” Science 310, 1671–1674 (2005).

    Article  Google Scholar 

  45. T. Kleine, M. Touboul, J. A. Van Orman, B. Bourdon, C. Maden, K. Mezger, and A. N. Halliday, “Hf-W Thermochronometry: Closure Temperature and Constraints on the Accretion and Cooling History of H Chondrites Parent Body,” Earth Planet. Sci. Lett. 270, 106–118 (2008).

    Article  Google Scholar 

  46. T. Kleine, M. Touboul, C. Burkhardt, and B. Bourdon, “Dating the First ∼100 Ma of the Solar System: From the Formation of CAIs to the Origin of the Moon,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008a), A480.

  47. T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, N. Palme, S. Jacobsen, Q.-Z. Yin, and A. N. Halliday, “Hf-W Chronology of the Accretion and Early Evolution of Asteroids and Terrestrial Planets,” Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    Article  Google Scholar 

  48. A. V. Kolesnichenko and M. Ya. Marov, “Fundamentals of the Mechanics of Heterogeneous Media in the Circumsolar Protoplanetary Cloud: The Effects of Solid Particles on Disk Turbulence,” Astron. Vestn. 40(1), 2–62 (2006) [Solar Syst. Res. 40 (1), 1–56 (2006)].

    Google Scholar 

  49. N. N. Kozlov and T. M. Eneev, “Numerical Modeling of the Formation of Planets from a Protoplanetary Cloud,” Preprint No. 134 (Inst. Prikl. Matem. Akad. Nauk SSSR, Moscow, 1977) [in Russian].

    Google Scholar 

  50. A. M. Krivtsov and N. V. Krivtsova, “Particle Method and Its Use in the Mechanics of Deformable Solids,” Dal’nevost. Matem. Zh. 3(2), 254–276 (2002).

    Google Scholar 

  51. E. Kurahashi, N. T. Kita, H. Nagahara, and Y. Morishita, “26Al-26Mg Systematics and Petrological Study of Chondrules in CR Chondrites,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008) A504.

  52. O. L. Kuskov and V. A. Kronrod, “Bulk Composition and Sizes of the Lunar Core,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 317–327 [in Russian].)

    Google Scholar 

  53. J. W. Larimer, “The Condensation and Fractionation of Refractory Lithophile Elements,” Icarus 40, 446–454 (1979).

    Article  Google Scholar 

  54. J. W. Larimer, “Nebular Chemistry and Theories of Lunar Origin,” in Origin of the Moon, Ed. by W. K. Hartman, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Houston, 1986), pp. 145–171.

    Google Scholar 

  55. A. A. Le-Zakharov and A. M. Krivtsov, “Algorithm for Calculation of the Collisional Dynamics of Gravitating Particles for the Simulation of the Earth-Moon System Formation Due to the Gravitational Collapse of a Dust Cloud,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 329–344 [in Russian].

    Google Scholar 

  56. D.-C. Lee and A. N. Halliday, “Hafnium-Tungsten Chronometry and the Timing of Terrestrial Core Formation,” Nature 378, 771–774 (1995).

    Article  Google Scholar 

  57. D.-C. Lee, A. N. Halliday, G. A. Snyder, and L. A. Taylor, “Age and Origin of the Moon,” Science 278, 1098–1103 (1997).

    Article  Google Scholar 

  58. I. Leya, W. Rainer, and A. N. Halliday, “Cosmic-Ray Production of Tungsten Isotopes in Lunar Samples and Meteorites and Its Implications for Hf-W Cosmochemistry,” Earth Planet. Sci. Lett. 175, 1–12 (2000).

    Article  Google Scholar 

  59. O. M. Markova, O. I. Yakovlev, G. L. Semenov, and A. N. Belov, “Some General Experimental Results on Natural Melt Evaporation in the Knudsen Cell,” Geokhimiya, No. 11, 1559–1569 (1986).

  60. M. Ya. Marov, A. V. Kolesnichenko, A. B. Makalkin, et al., “From Protosolar Cloud to the Planetary System: Model of the Evolution of a Gas-Dust Disk,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 223–273 [in Russian].

    Google Scholar 

  61. M. T. McCulloch, “Primitive 87Sr/86Sr from an Archean Barite and Conjecture on the Earth’s Age and Origin,” Earth Planet. Sci. Lett. 126, 1–13 (1994).

    Article  Google Scholar 

  62. H. J. Melosh, “A New and Improved Equation of State for Impact Computations,” Proc. 31st Lunar Planet. Conf., 1903 (2000).

  63. Y. Nakamura, “Seismic Velocity Structure of the Lunar Mantle,” J. Geophys. Res. 88, 677–686 (1983).

    Article  Google Scholar 

  64. H. E. Newsom, “Constraints on the Origin of the Moon from Abundance of Molybdenum and Other Siderophile Elements,” in Origin of the Moon, Ed. by W. K. Hartman, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Huoston, 1986), pp. 203–230.

    Google Scholar 

  65. M. D. Norman, E. Borg, L. E. Nyquist, and D. D. Bogard, “Chronology, Geochemistry, and Petrology of a Ferroan Noritic Anorthosite Clast from Descartes Breccia 67215: Clues to the Age, Origin, Structure, and Impact History of the Lunar Crust,” Meteor. Planet. Sci. 38, 645–661 (2003).

    Article  Google Scholar 

  66. L. E. Nyquist and C.-Y. Shih, “The Isotopic Record of Lunar Volcanism,” Geochim. Cosmochim. Acta 56, 2213–2234 (1992).

    Article  Google Scholar 

  67. H. St. C. O’Neill, “The Origin of the Moon and the Early History of the Earth-A Chemical Model. Part 1: The Moon,” Geochim. Cosmochim. Acta 55, 1135–1157 (1991).

    Article  Google Scholar 

  68. K. Pahlevan and D. J. Stevenson, “Volatile Loss Following the Moon-Forming Giant Impact,” in Goldschmidt Conference Abstracts, Vancouver, Canada, 2008 (Vancouver, 2008), A716.

  69. F. A. Podosek and P. Cassen, “Theoretical, Observational, and Isotopic Estimates of the Lifetime of the Solar Nebula,” Meteoritics 29, 6–25 (1994).

    Google Scholar 

  70. F. A. Podosek and M. Ozima, “The Xenon Age of the Earth,” in Origin of the Earth and Moon, Ed. by R. M. Canap and K. Righter (Univ. Arizona, 2000), pp. 63–74.

  71. F. Poitrasson, “Does Planetary Differentiation Really Fractionate Iron Isotopes?” Earth Planet. Sci. Lett. 223, 484–492 (2007).

    Article  Google Scholar 

  72. F. Poitrasson, A. N. Halliday, D. C. Lee, S. Levasseur, and N. Teutsch, “Iron Isotope Differences between Earth, Moon, Mars and Vesta as Possible Records of Contrasted Accretion Mechanisms,” Earth Planet. Sci. Lett. 223, 253–266 (2004)

    Article  Google Scholar 

  73. D. Porcelli, D. Woollum, and P. Cassen, “Deep Earth Rare Gases: Initial Inventories, Capture from the Solar Nebula, and Losses during Moon Formation,” Earth Planet. Sci. Lett. 193, 237–251 (2001).

    Article  Google Scholar 

  74. K. Righter, K. M. Pando, L. Danielson, and C.-T. Lee, “Partitioning of Mo, P, and Other Siderophile Elements (Cu, Ga, Sn, Ni, Co, Cr, Mn, V, and W) between Metal and Silicate Melt as a Function of Temperature and Silicate Melt Composition,” Earth Planet. Sci. Lett. 291, 1–9 (2010).

    Article  Google Scholar 

  75. A. E. Ringwood, “Composition and Origin of the Moon,” in “Origin of the Moon,” Ed. by W. K. Hartmann et al. (Lunar Planet. Inst., Houston, 1986), pp. 673–698.

    Google Scholar 

  76. V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Moscow, Nauka, 1969) [in Russian].

    Google Scholar 

  77. R. Schoenberg, B. S. Kamber, K. D. Collerson, and O. Eugster, “New W-Isotope Evidence for Rapid Terrestrial Accretion and Very Early Core Formation,” Geochim. Cosmochim. Acta 66, 3151–3160 (2002).

    Article  Google Scholar 

  78. C.-Y. Shih, L. E. Nyquist, E. J. Dasch, D. D. Bogard, B. M. Bansal, and H. Wiesmann, “Age of Pristine Noritic Clasts from Lunar Breccias 15445 and 15455,” Geochim. Cosmochim. Acta 57, 915–931 (1993).

    Article  Google Scholar 

  79. G. R. Stewart and W. M. Kaula, “A Gravitational Kinetic Theory for Planetesimales,” Icarus 24, 516–524 (1980)

    Google Scholar 

  80. D. Stevenson, “Earth Formation: Combining Physical Models with Isotopic and Elemental Constraints,” Geochim. Cosmochim. Acta, 15th Goldshmidt Conference Abstract Volume, A382 (2005).

  81. T. D. Swindle and F. A. Podosek, “Iodine-Xenon Dating,” in Meteorites and the Early Solar System, Ed. by J. F. Kerridge and M. S. Matthews (Univ. Arizona, Tucson, 1988), pp. 1127–1146 (1988).

    Google Scholar 

  82. S. R. Taylor, “The Origin of the Moon: Geochemical Consideration,” in Origin of the Moon, Ed. by W. K. Hartmann, R. J. Phillips, and G. J. Taylor (Lunar Planet. Inst., Houston, 1986), pp. 125–144.

    Google Scholar 

  83. F. Tera, D. A. Papanastassiou, and G. J. Wasserburg, “A Lunar Cataclysm at ∼3.95 AE and the Structure of the Lunar Crust,” Proc. 4th Lunar. Conf., 723–725 (1973).

  84. M. Touboul, T. Kleine, B. Bourdon, H. Palme, and R. Wieler, “Late Formation and Prolonged Differentiation of the Moon Inferred from W Isotopes in Lunar Metals,” Nature 450, 1206–1209 (2007).

    Article  Google Scholar 

  85. S. V. Vasilyev, A. M. Krivtsov, and E. M. Galimov, “Modeling Space Bodies Growth by Accumulation of Space Dust Material,” in Proc. 32nd Summer School-Conference Advanced Problem in Mechanics, St. Petersburg. Russia, 2004 (St. Petersburg, 2004), pp. 425–428.

  86. A. V. Vityazev, G. V. Pechernikova, and V. S. Safronov, Terrestrial Planets: Origin and Early Evolution (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  87. J. Wang, A. M. Davis, R. N. Clayton, and A. Hashimoto, “Evaporation of Single Crystal Forsterite: Evaporation Kinetics, Magnesium Isotope Fractionation and Implication of Mass-Dependent Isotopic Fractionation of Mass-Controlled Reservoir,” Geochim. Cosmochim. Acta 63, 953–966 (1999).

    Article  Google Scholar 

  88. H. Wanke and G. Dreibus, “Geochemical Evidence for the Formation of the Moon by Impact-Induced Fission of the Proto-Earth,” in Origin of the Moon, Ed by W. K. Hartman et al. (Lunar Planet. Inst., Houston, 1986), pp. 649–672.

    Google Scholar 

  89. S. Weyer, A. D. Anbar, G. P. Brey, C. Munker, K. Mezger, and A. B. Woodland, “Iron Isotope Fractionation during Planetary Differentiation,” Earth Planet. Sci. Lett. 240, 251–264 (2005).

    Article  Google Scholar 

  90. G. W. Wetherill, “Formation of the Terrestrial Planets,” Annu. Rev. Astron. Astrophys. 18, 77–113 (1980)

    Article  Google Scholar 

  91. G. W. Wetherill and L. P. Cox, “The Range of Validity of the Two-Body Approximation in Models of Terrestrial Planet Accumulation,” Icarus 63, 290–303 (1985).

    Article  Google Scholar 

  92. H. M. Williams, A. Markowski, G. Quitté, A. N. Halliday, N. Teutsch, and S. Levasseur, “Fe Isotope Fractionation in Iron Meteorites: New Insights into Metal-Sulphide Segregation and Planetary Accretion,” Earth Planet. Sci. Lett. 250, 486–500 (2006).

    Article  Google Scholar 

  93. B. J. Wood, J. Wade, and M. R. Kilburn, “Core Formation and the Oxidation State of the Earth: Additional Constraints from Nb, V and Cr Partitioning,” Geochim. Cosmochim. Acta 72, 1415–1426 (2008).

    Article  Google Scholar 

  94. Q. Yin, S. B. Jacobsen, K. Yamashita, J. Blichert-Toff, P. Telouk, and F. Albarede, “A Short Timescale for Terrestrial Planet Formation from Hf-W Chronometry of Meteorites,” Nature 418, 949–952 (2002).

    Article  Google Scholar 

  95. A. V. Zabrodin, E. A. Zabrodina, M. S. Legkostupov, et al., “Some Descriptive Models of the Protoplanetary Disk of the Sun at the Initial Stage of its Evolution,” in Problems of the Origin and Evolution of the Biosphere, Ed. by E. M. Galimov (URSS, Moscow, 2008), pp. 297–315 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Galimov.

Additional information

Original Russian Text © E.M. Galimov, 2011, published in Geokhimiya, 2011, Vol. 49, No. 6, pp. 563–580.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galimov, E.M. Formation of the Moon and the Earth from a common supraplanetary gas-dust cloud (lecture presented at the XIX all-Russia symposium on isotope geochemistry on November 16, 2010). Geochem. Int. 49, 537–554 (2011). https://doi.org/10.1134/S0016702911060048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702911060048

Keywords

Navigation