Skip to main content
Log in

N-Alkylation of Imidazoles with Dialkyl and Alkylene Carbonates

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The reactions of imidazoles with a series of dialkyl and alkylene carbonates afforded the corresponding N-alkyl- and N-(hydroxyalkyl)imidazoles with high yields. The reactivity of dialkyl carbonates decreases in the series dimethyl > diethyl > dibutyl carbonate. Ethylene carbonate is a more efficient alkylating agent than trimethylene carbonate. The mechanisms of alkylation of imidazole with dimethyl carbonate and ethylene carbonate were studied by DFT quantum chemical calculations at the B3LYP/6-311++G(d,p) level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aricò, F. and Tundo, P., Russ. Chem. Rev., 2010, vol. 79, p. 479. https://doi.org/10.1070/rc2010v079n06abeh004113

    Article  Google Scholar 

  2. Kalhoff, J., Eshetu, G.G., Bresser, D., and Passerini, S., ChemSusChem, 2015, vol. 8, p. 2154. https://doi.org/10.1002/cssc.201500284

    Article  CAS  PubMed  Google Scholar 

  3. Clagett, D.C. and Shafer, S.J., Polym. Eng. Sci., 1985, vol. 25, p. 458. https://doi.org/10.1002/pen.760250805

    Article  CAS  Google Scholar 

  4. Tundo, P., Musolino, M., and Aricò, F., Green Chem., 2018, vol. 20, p. 28. https://doi.org/10.1039/c7gc01764b

    Article  CAS  Google Scholar 

  5. Ouk, S., Thiébaud, S., Borredon, E., and Chabaud, B., Synth. Commun., 2005, vol. 35, p. 3021. https://doi.org/10.1080/00397910500278578

    Article  CAS  Google Scholar 

  6. Carafa, M., Distaso, M., Mele, V., Trani, F., and Quaranta, E., Tetrahedron Lett., 2008, vol. 49, p. 3691. https://doi.org/10.1016/j.tetlet.2008.03.129

    Article  CAS  Google Scholar 

  7. Zhao, S.Y., Zhang, H.Q., Zhang, D.Q., and Shao, Z.Y., Synth. Commun., 2012, vol. 42, p. 128. https://doi.org/10.1080/00397911.2010.523151

    Article  CAS  Google Scholar 

  8. Shieh, W.C., Dell, S., Bach, A., Repič, O., and Blacklock, T.J., J. Org. Chem., 2003, vol. 68, p. 1954. https://doi.org/10.1021/jo0266644

    Article  CAS  PubMed  Google Scholar 

  9. Shieh, W.C., Lozanov, M., Loo, M., Repič, O., and Blacklock, T.J., Tetrahedron Lett., 2003, vol. 44, p. 4563. https://doi.org/10.1016/S0040-4039(03)00992-4

    Article  CAS  Google Scholar 

  10. Shieh, W.C., Lozanov, M., and Repič, O., Tetrahedron Lett., 2003, vol. 44, p. 6943. https://doi.org/10.1016/S0040-4039(03)01711-8

    Article  CAS  Google Scholar 

  11. Jiang, X., Tiwari, A., Thompson, M., Chen, Z., Cleary, T.P., and Lee, T.B.K., Org. Process Res. Dev., 2001, vol. 5, p. 604. https://doi.org/10.1021/op0102215

    Article  CAS  Google Scholar 

  12. Carafa, M., Mele, V., and Quaranta, E., Green Chem., 2012, vol. 14, p. 217. https://doi.org/10.1039/c1gc15984d

    Article  CAS  Google Scholar 

  13. Carafa, M., Iannone, F., Mele, V., and Quaranta, E., Green Chem., 2012, vol. 14, p. 3377. https://doi.org/10.1039/c2gc36103e

    Article  CAS  Google Scholar 

  14. Shieh, W.C., Dell, S., and Repič, O., Org. Lett., 2001, vol. 3, p. 4279. https://doi.org/10.1021/ol016949n

    Article  CAS  PubMed  Google Scholar 

  15. Hu, X., Dong, W., Xie, A., Feng, L., Zhang, Q., and Liu, Y., J. Heterocycl. Chem., 2014, vol. 52, p. 1483. https://doi.org/10.1002/jhet.2179

    Article  CAS  Google Scholar 

  16. Banfi, A., Sala, A., Soresinetti, P.A., and Russo, G., J. Heterocycl. Chem., 1990, vol. 27, p. 215. https://doi.org/10.1002/jhet.5570270219

    Article  CAS  Google Scholar 

  17. Tilstam, U., Org. Process Res. Dev., 2012, vol. 16, p. 1974. https://doi.org/10.1021/op3002068

    Article  CAS  Google Scholar 

  18. Kamber, N.E., Jeong, W., Waymouth, R.M., Pratt, R.C., Lohmeijer, B.G.G., and Hedrick, J.L., Chem. Rev., 2007, vol. 107, p. 5813. https://doi.org/10.1021/cr068415b

    Article  CAS  PubMed  Google Scholar 

  19. Nederberg, F., Lohmeijer, B.G.G., Leibfarth, F., Pratt, R.C., Choi, J., Dove, A.P., Waymouth, R.M., and Hedrick, J.L., Biomacromolecules, 2007, vol. 8, p. 153. https://doi.org/10.1021/bm060795n

    Article  CAS  PubMed  Google Scholar 

  20. Neese, F., Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, vol. 2, p. 73. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the facilities of the “Spectroscopy and Analysis of Organic Compounds” joint center. Quantum chemical calculations were performed using Uran supercomputer at the Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences.

Funding

This study was performed in the framework of state assignment for Postovsky Institute of Organic Synthesis (Ural Branch, Russian Academy of Sciences), as well as under financial support by the Ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A20-120061990010-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pestov.

Ethics declarations

The authors declare the absence of conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabov, I.S., Khamidullina, L.A., Puzyrev, I.S. et al. N-Alkylation of Imidazoles with Dialkyl and Alkylene Carbonates. Russ J Org Chem 56, 2079–2086 (2020). https://doi.org/10.1134/S1070428020120052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020120052

Keywords:

Navigation