Skip to main content
Log in

Platelet Activation through GPVI Receptor: Variability of the Response

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Platelets are nuclear-free cell fragments responsible for preventing blood loss in case of the vascular wall injury. After a contact with collagen exposed when the vessel is damaged, platelets become activated through the receptor glycoprotein GPVI. This leads to platelet shape change, degranulation, aggregation, and procoagulant responses. The aim of this study was to observe changes in the concentration of Ca2+ in the cytosol and functional responses of platelets upon stimulation through the GPVI receptor. The study involved healthy adult volunteers and house mice Mus musculus of the C57Bl6 line (wild type). Calcium signaling was monitored by Fura-Red fluorophore fluorescence using BD FACS Canto II flow cytometer. Functional responses were observed on a flow cytometer by binding of human fibrinogen conjugated to a fluorescent label or by Biola optical aggregometry. When tested on a cytometer, platelets were activated by collagen-related peptide CRP and when tested by aggregometry, platelets were activated using collagen. As a result of the study, the following phenomenon was revealed: despite a significant variability in the human platelet cytosolic Ca2+ levels in response to stimulation, the variability in activation of platelet integrins, shape change, and the aggregation response was significantly lower. No variability in the platelet cytosolic Ca2+ levels in response to stimulation was observed in mice. The observed variability of the calcium response of platelets could be caused by differences in the GPVI expression or polymorphisms of the GPVI receptor gene in the studied donors. Similarities in the functional responses of platelets with different signaling suggest a variable contribution of the phosphoinositide branch of intracellular signaling in platelets in response to activation of GPVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Weinberg C.B., Bell E. 1986. A blood vessel model constructed from collagen and cultured vascular cells. Science. 231 (4736), 397–400.

    Article  CAS  PubMed  Google Scholar 

  2. Monroe D.M., Hoffman M. 2006. What does it take to make the perfect clot? Arterioscler. Thromb. Vasc. Biol. 26 (1), 41–48.

    Article  CAS  PubMed  Google Scholar 

  3. Jackson S.P., Nesbitt W.S., Kulkarni S. 2003. Signaling events underlying thrombus formation. J. Thromb. Haemost. 1 (7), 1602–1612.

    Article  CAS  PubMed  Google Scholar 

  4. Siedlecki C.A., Lestini B.J., Kottke-Marchant K., Eppell S.J., Wilson D.L., Marchant R.E. 1996. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood. 88 (8), 2939–2950.

    Article  CAS  PubMed  Google Scholar 

  5. Koupenova M., Kehrel B.E., Corkrey H.A., Freedman J.E. 2016. Thrombosis and platelets: An update. Eur. Heart J. 38 (11), 785–791.

    Google Scholar 

  6. Yun S.H., Sim E.H., Goh R.Y., Park J.I., Han J.Y. 2016. Platelet activation: The mechanisms and potential biomarkers. Biomed Res. Int. 2016, 9060143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Jackson S.P. 2011. Arterial thrombosis-insidious, unpredictable and deadly. Nature Medicine. 17 (11), 1423–1436.

    Article  CAS  PubMed  Google Scholar 

  8. Snell D.C., Schulte V., Jarvis G.E., Arase K., Sakurai D., Saito T., Watson S.P., Nieswandt B. 2002. Differential effects of reduced glycoprotein VI levels on activation of murine platelets by glycoprotein VI ligands. Biochem. J. 368 (1), 293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Versteeg H.H., Heemskerk J.W.M., Levi M., Reitsma P.H. 2013. New fundamentals in hemostasis. Physiol. Rev. 93 (1), 327–358.

    Article  CAS  PubMed  Google Scholar 

  10. Bennett J.S. 2015. Regulation of integrins in platelets. Biopolymers. 104 (4), 323–333.

    Article  CAS  PubMed  Google Scholar 

  11. Lagrue-Lak-Hal A.H., Debili N., Kingbury G., Lecut C., Le Couedic J.P., Villeval J.L., Jandrot-Perrus M., Vainchenker W. 2001. Expression and function of the collagen receptor GPVI during megakaryocyte maturation. J. Biol. Chem. 276 (18), 15 316–15 325.

    Article  Google Scholar 

  12. Nieswandt B., Watson S.P. 2003. Platelet-collagen interaction: Is GPVI the central receptor? Blood. 102 (2), 449–461.

    Article  CAS  PubMed  Google Scholar 

  13. Boylan B., Berndt M.C., Kahn M.L., Newman P.J. 2006. Activation-independent, antibody-mediated removal of GPVI from circulating human platelets: Development of a novel NOD/SCID mouse model to evaluate the in vivo effectiveness of anti-human platelet agents. Blood. 108 (3), 908–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Polgár J., Clemetson J.M., Kehrel B.E., Wiedemann M., Magnenat E.M., Wells T.N.C., Clemetson K.J. 1997. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (Tropical rattlesnake) venom via the p62/GPVI collagen receptor. J. Biol. Chem. 272 (21), 13 576–13 583.

    Article  Google Scholar 

  15. Alshehri O.M., Hughes C.E., Montague S., Watson S.K., Frampton J., Bender M., Watson S.P. 2015. Fibrin activates GPVI in human and mouse platelets. Blood. 126 (13), 1601–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Induruwa I., Moroi M., Bonna A., Malcor J.D., Howes J.M., Warburton E.A., Farndale R.W., Jung S.M. 2018. Platelet collagen receptor glycoprotein VI-dimer recognizes fibrinogen and fibrin through their D-domains, contributing to platelet adhesion and activation during thrombus formation. J. Thromb. Haemost. 16 (2), 389–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mangin P.H., Onselaer M.B., Receveur N., Le Lay N., Hardy A.T., Wilson C, Sanchez X., Loyau S., Dupuis A., Babar A.K., Miller J.L.C., Philippou H., Hughes C.E., Herr A.B., Ariëns R.A.S., Mezzano D., Jandrot-Perrus M., Gachet C., Watson S.P. 2018. Immobilized fibrinogen activates human platelets through glycoprotein VI. Haematologica. 103 (5), 898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Getahun A., Cambier J.C. 2015. Of ITIMs, ITAMs, and ITAMis: Revisiting immunoglobulin Fc receptor signaling. Immunol. Rev. 268 (1), 66–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andrews R.K., Suzuki-Inoue K., Shen Y., Tulasne D., Watson S.P., Berndt M.C. 2002. Interaction of calmodulin with the cytoplasmic domain of platelet glycoprotein VI. Blood. 99 (11), 4219–4221.

    Article  CAS  PubMed  Google Scholar 

  20. Moroi M., Jung S.M. 2004. Platelet glycoprotein VI: Its structure and function. Thromb. Res. 114 (4), 221–233.

    Article  CAS  PubMed  Google Scholar 

  21. Quek L., Pasquet J., Hers I., Cornall R., Knight G., Barnes M., Hibbs M., Dunn A., Lowell C., Watson S. 2001. Fyn and Lyn phosphorylate the Fc receptor gamma chain downstream of glycoprotein VI in murine platelets, and Lyn regulates a novel feedback pathway. Blood. 96, 4246–4253.

    Article  Google Scholar 

  22. Dumont B., Lasne D., Rothschild C., Bouabdelli M., Ollivier V., Oudin C., Ajzenberg N., Grandchamp B., Jandrot-Perrus M. 2009. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood. 114 (9), 1900–1903.

    Article  CAS  PubMed  Google Scholar 

  23. Hermans C., Wittevrongel C., Thys C., Smethurst P.A., Van Geet C., Freson K. 2009. A compound heterozygous mutation in glycoprotein VI in a patient with a bleeding disorder. J. Thromb. Haemost. 7 (8), 1356–1363.

    Article  CAS  PubMed  Google Scholar 

  24. Matus V., Valenzuela G., Sáez C.G., Hidalgo P., Lagos M., Aranda E., Panes O., Pereira J., Pillois X., Nurden A.T., Mezzano D. 2013. An adenine insertion in exon 6 of human GP6 generates a truncated protein associated with a bleeding disorder in four Chilean families. J. Thromb. Haemost. 11 (9), 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  25. Arthur J.F., Dunkley S., Andrews R.K. 2007. Platelet glycoprotein VI-related clinical defects. British J. Haematology. 139 (3), 363–372.

    Article  CAS  Google Scholar 

  26. Moroi M., Shinmyozut K., Hospital K.C. 1989. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J. Clin. Investig. 84, 1440–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nieswandt B., Bergmeier W., Schulte V., Rackebrandt K., Gessner J.E., Zirngibl H. (2000) Expression and function of the mouse collagen receptor glycoprotein VI is strictly dependent on its association with the FcRγ chain. J. Biol. Chem. 275 (31), 23 998–24 002.

    Article  Google Scholar 

  28. Nieswandt B., Schulte V., Bergmeier W., Mokhtari-Nejad R., Rackebrandt K., Cazenave J.P., Ohlmann P., Gachet C., Zirngibl H. 2001. Long-term antithrombotic protection by in vivo depletion of platelet glycoprotein VI in mice. J. Exp. Med. 193 (4), 459–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dütting S., Bender M., Nieswandt B. 2012. Platelet GPVI: A target for antithrombotic therapy?! Trends Pharmacol. Sci. 33, 583–590.

    Article  PubMed  CAS  Google Scholar 

  30. Ungerer M., Rosport K., Bültmann A., Piechatzek R., Uhland K., Schlieper P., Gawaz M., Münch G. 2011. Novel antiplatelet drug revacept (dimeric glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation. 123 (17), 1891–1899.

    Article  CAS  PubMed  Google Scholar 

  31. Geahlen R.L. 2014. Getting Syk: Spleen tyrosine kinase as a therapeutic target. Trends Pharmacol. Sci. 35 (8), 414–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mangin P.H., Tang C.J., Bourdon C., Loyau S., Freund M., Hechler B., Gachet C., Jandrot-Perrus M. 2012. A humanized glycoprotein VI (GPVI) mouse model to assess the antithrombotic efficacies of anti-GPVI agents. J. Pharmacol. Exp. Ther. 341 (1), 156–163.

    Article  CAS  PubMed  Google Scholar 

  33. Li H., Lockyer S., Concepcion A., Gong X., Takizawa H., Guertin M., Matsumoto Y., Kambayashi J., Tandon N.N., Liu Y. 2007. The fab fragment of a novel anti-GPVI monoclonal antibody, OM4, reduces in vivo thrombosis without bleeding risk in rats. Arterioscler. Thromb. Vasc. Biol. 27 (5), 1199–1205.

    Article  CAS  PubMed  Google Scholar 

  34. Takayama H., Hosaka Y., Nakayama K., Shirakawa K., Naitoh K., Matsusue T., Shinozaki M., Honda M., Yatagai Y., Kawahara T., Hirose J., Yokoyama T., Kurihara M., Furusako S. 2008. A novel antiplatelet antibody therapy that induces cAMP-dependent endocytosis of the GPVI/Fc receptor γ-chain complex. J. Clin. Investig. 118 (5), 1785–1795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morton L.F., Hargreaves P.G., Farndale R.W., Young R.D., Barnes M.J. 1995. Integrin α2β1-independent activation of platelets by simple collagen-like peptides: Collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for α2β1-independent platelet reactivity. Biochem. J. 306 (2), 337–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cazenave J.P., Ohlmann P., Cassel D., Eckly A., Hechler B., Gachet C. 2004. Preparation of washed platelet suspensions from human and rodent blood. Methods Mol. Biol. 272 (5), 13–28.

    CAS  PubMed  Google Scholar 

  37. Alberio L., Ravanat C., Hechler B., Mangin P.H., Lanza F., Gachet C. 2017. Delayed-onset of procoagulant signalling revealed by kinetic analysis of COAT platelet formation. Thromb. Haemost. 117 (06), 1101–1114.

    Article  PubMed  Google Scholar 

  38. Martyanov A.A., Morozova D.S., Sorokina M.A., Filkova A.A., Fedorova D.V., Uzueva S.S., Suntsova E.V., Novichkova G.A., Zharkov P.A., Panteleev M.A., Sveshnikova A.N. 2020. Heterogeneity of integrin αIIbβ3 function in pediatric immune thrombocytopenia revealed by continuous flow cytometry analysis. Int. J. Mol. Sci. 21 (9), 3035.

    Article  CAS  PubMed Central  Google Scholar 

  39. Martyanov A.A., Balabin F.A., Dunster J.L., Panteleev M.A., Gibbins J.M., Sveshnikova A.N. 2020. Control of platelet CLEC-2-mediated activation by receptor clustering and tyrosine kinase signaling. Biophys. J. 118 (11), 2641–2655. https://doi.org/10.1016/j.bpj.2020.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sveshnikova A.N., Balatskiy A.V., Demianova A.S., Shepelyuk T.O., Shakhidzhanov S.S., Balatskaya M.N., Pichugin A.V., Ataullakhanov F.I., Panteleev M.A. 2016. Systems biology insights into the meaning of the platelet’s dual-receptor thrombin signaling. J. Thromb. Haemost. 14 (10), 2045–2057.

    Article  CAS  PubMed  Google Scholar 

  41. Martyanov A.A., Morozova D.S., Khoreva A.L., Panteleev M.A., Shcherbina A.Yu., Sveshnikova A.N. 2020. Features of intracellular calcium signaling of platelets in Wiskott–Aldrich syndrome. Voprosy Onkol./Gematol. Immunopatol. v Pediatrii (Rus.). 19 (1), 100–107.

  42. Furihata K., Clemetson K.J., Deguchi H., Kunicki T.J. 2001. Variation in human platelet glycoprotein VI content modulates glycoprotein VI-specific prothrombinase activity. Arterioscler. Thromb. Vasc. Biol. 21 (11), 1857–1863.

    Article  CAS  PubMed  Google Scholar 

  43. Best D., Senis Y.A., Jarvis G.E., Eagleton H.J., Roberts D.J., Saito T., Jung S.M., Moroi M., Harrison P., Green F.R., Watson S.P. 2003. GPVI levels in platelets: Relationship to platelet function at high shear. Blood. 102 (8), 2811–2818.

    Article  CAS  PubMed  Google Scholar 

  44. Joutsi-Korhonen L., Smethurst P.A., Rankin A., Gray E., IJsseldijk M., Onley C.M., Watkins N.A., Williamson L.M., Goodall A.H., de Groot P.G., Farndale R.W., Ouwehand W.H. 2003. The low-frequency allele of the platelet collagen signaling receptor glycoprotein VI is associated with reduced functional responses and expression. Blood. 101 (11), 4372–4379.

    Article  CAS  PubMed  Google Scholar 

  45. Croft S.A., Samani N.J., Teare M.D., Hampton K.K., Steeds K.S., Channer K.S., Daly M.E. 2001. Novel platelet membrane glycoprotein VI dimorphism is a risk factor for myocardial infarction. Circulation. 104 (13), 1459–1463.

    Article  CAS  PubMed  Google Scholar 

  46. Trifiro E., Williams S.A., Cheli Y., Furihata K., Pulcinelli F.M., Nugent D.J., Kunicki T.J. 2009. The low-frequency isoform of platelet glycoprotein VIb attenuates ligand-mediated signal transduction but not receptor expression or ligand binding. Blood. 114 (9), 1893–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jones C.I., Garner S.F., Angenent W., Bernard A., Berzuini C., Burns P., Farndale R.W., Hogwood J., Rankin A., Stephens J.C., Tom B.D., Walton J., Dudbridge F., Ouwehand W.H., Goodall A.H. 2007. Mapping the platelet profile for functional genomic studies and demonstration of the effect size of the GP6 locus. J. Thromb. Haemost. 5 (8), 1756–1765.

    Article  CAS  PubMed  Google Scholar 

  48. Ollikainen E., Mikkelsson J., Perola M., Penttilä A., Karhunen P.J. 2004. Platelet membrane collagen receptor glycoprotein VI polymorphism is associated with coronary thrombosis and fatal myocardial infarction in middle-aged men. Atherosclerosis. 176 (1), 95–99.

    Article  CAS  PubMed  Google Scholar 

  49. Takagi S., Iwai N., Baba S., Mannami T., Ono K., Tanaka C., Miyata T., Miyazaki S., Nonogi H., Goto Y. 2002. A GPVI polymorphism is a risk factor for myocardial infarction in Japanese. Atherosclerosis. 165 (2), 397–398.

    Article  CAS  PubMed  Google Scholar 

  50. Snoep J.D., Gaussem P., Eikenboom J.C.J., Emmerich J., Zwaginga J.J., Holmes C.E., Vos H.L., De Groot P.H.G., Herrington D.M., Bray P.F., Rosendaal F.R., Van der Bom J.G. 2010. The minor allele of GP6 T13254C is associated with decreased platelet activation and a reduced risk of recurrent cardiovascular events and mortality: Results from the SMILE–Platelets project. J. Thromb. Haemost. 8 (11), 2377–2384.

    Article  CAS  PubMed  Google Scholar 

  51. Bernardi B., Guidetti G.F., Campus F., Crittenden J.R., Graybiel A.M., Balduini C., Torti M. 2006. The small GTPase Rap1b regulates the cross talk between platelet integrin alpha2beta1 and integrin alphaIIbbeta3. Blood. 107 (7), 2728–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bertoni A., Tadokoro S., Eto K., Pampori N., Parise L.V., White G.C., Shattil S.J. 2002. Relationships between Rap1b, affinity modulation of integrin αIIbβ3, and the actin cytoskeleton. J. Biol. Chem. 277 (28), 25 715–25 721.

    Article  CAS  Google Scholar 

  53. Gilio K., Munnix I.C.A., Mangin P., Cosemans J.M.E.M., Feijge M.A.H., van der Meijden P.E.J., Olieslagers S., Chrzanowska-Wodnicka M.B., Lillian R., Schoenwaelder S., Koyasu S., Sage S.O., Jackson S.P., Heemskerk J.W.M. 2009. Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation. J. Biol. Chem. 284 (49), 33 750–33 762.

    Article  CAS  Google Scholar 

  54. Gardiner E.E., Karunakaran D., Shen Y., Arthur J.F., Andrews R.K., Berndt M.C. 2007. Controlled shedding of platelet glycoprotein (GP)VI and GPIb–IX–V by ADAM family metalloproteinases. J. Thromb. Haemost. 5 (7), 1530–1537.

    Article  CAS  PubMed  Google Scholar 

  55. Andrews R.K., Karunakaran D., Gardiner E.E., Berndt M.C. 2007. Platelet receptor proteolysis: A mechanism for downregulating platelet reactivity. Arterioscler. Thromb. Vasc. Biol. 27 (7), 1511–1520.

    Article  CAS  PubMed  Google Scholar 

  56. Stephens G., Yan Y., Jandrot-Perrus M., Villeval J.L., Clemetson K.J., Phillips D.R. 2005. Platelet activation induces metalloproteinase-dependent GP VI cleavage to down-regulate platelet reactivity to collagen. Blood. 105 (1), 186–191.

    Article  CAS  PubMed  Google Scholar 

  57. Massberg S., Konrad I., Bültmann A., Schulz C., Münch G., Peluso M., Lorenz M., Schneider S., Besta F., Müller I., Hu B.I.N., Langer H., Kremmer E., Rudelius M., Heinzmann U., Ungerer M., Gawaz M. 2003. Soluble glycoprotein VI dimer inhibits platelet adhesion and aggregation to the injured vessel wall in vivo. FASEB J. 18 (2), 397–399.

    PubMed  Google Scholar 

  58. Alessi M.C., Sié P., Payrastre B. 2020. Strengths and weaknesses of light transmission aggregometry in diagnosing hereditary platelet function disorders. J. Clin. Med. 9 (3), 763.

    Article  CAS  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.A. Panteleev (CTP PCP RAS, Moscow, Russia) for discussions during the research and V.V. Popov (Faculty of Fundamental Medicine, Moscow State University, Russia) for advice on animal research.

Funding

This work was supported by the Russian Science Foundation (project no. 17-74-20 045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Sveshnikova.

Ethics declarations

The authors declare that they have no conflict of interest.

All experimental procedures were performed in accordance with the Helsinki Declaration and Directive of the European Parliament 63/2010/EU on humane treatment of animals and were approved by the Ethics Committee of the TTC FHF RAS. In studies involving humans, an informed consent was obtained from all individual participants.

Additional information

Translated by A. Martyanov

Abbreviations: CRP, collagen-related peptide; EPR, endoplasmic reticulum; GPVI, glycoprotein-VI; PRP, platelet rich plasma; vWF, Willebrand factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanyan, M.G., Filkova, A.A., Garzon Dasgupta, A.K. et al. Platelet Activation through GPVI Receptor: Variability of the Response. Biochem. Moscow Suppl. Ser. A 15, 73–81 (2021). https://doi.org/10.1134/S1990747820050074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747820050074

Keywords:

Navigation