Skip to main content
Log in

Exploring quadrupole oscillator strength of impurity doped quantum dots controlled by Gaussian white noise

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Present study explores the effect of Gaussian white noise on quadrupole oscillator strength (QOS) of impurity doped quantum dot (QD). In view of this QOS profiles have been monitored as various relevant physical parameters vary over a range with and without noise. Two distinct pathways viz. additive and multiplicative have been conceived for the entrance of noise to the system. The QOS profiles exhibit rather regular behavior in absence of noise and in presence of additive noise in similar ways. However, multiplicative noise appears to be successful in bringing about important aspects like maximization, minimization and saturation in the QOS profiles and also for production of large QOS. The outcomes of the study are expected to have substantial impact on nonlinear optical properties of opto-electronic devices comprising of QD where noise plays some active role.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Taş, M. Şahin, J. Appl. Phys. 112, 053717 (2012)

    Article  ADS  Google Scholar 

  2. Y. Yakar, B. Çakir, A. Özmen, Chem. Phys. Lett. 708, 138 (2018)

    Article  ADS  Google Scholar 

  3. W. Xie, Phys. B 405, 3436 (2010)

    Article  ADS  Google Scholar 

  4. R. Khordad, H. Bahramiyan, Physica E 66, 107 (2015)

    Article  ADS  Google Scholar 

  5. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys.: Condens. Matter 19, 395024 (2007)

    Google Scholar 

  6. G. Rezaei, M.R.K. Vahdani, B. Vaseghi, Curr. Appl. Phys. 11, 176 (2011)

    Article  ADS  Google Scholar 

  7. G. Rezaei, B. Vaseghi, F. Taghizadeh, M.R.K. Vahdani, M.J. Karimi, Superlattices Microstruct. 48, 450 (2010)

    Article  ADS  Google Scholar 

  8. L. Lu, W. Xie, H. Hassanabadi, J. Appl. Phys. 109, 063108 (2011)

    Article  ADS  Google Scholar 

  9. I. Karabulut, Ü. Atav, H. Şafak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)

    Article  ADS  Google Scholar 

  10. I. Karabulut, Ü. Atav, H. Şafak, M. Tomak, Physica B 393, 133 (2007)

    Article  ADS  Google Scholar 

  11. C.A. Duque, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, U. Yesilgul, S. Sakiroglu, H. Sari, I. Sökmen, J. Lumin. 143, 304 (2013)

    Article  Google Scholar 

  12. E. Kasapoglu, F. Ungan, H. Sari, I. Sökmen, M.E. Mora-Ramos, C.A. Duque, Superlattices Microstruct. 73, 171 (2014)

    Article  ADS  Google Scholar 

  13. S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Status Solidi C 4, 292 (2007)

    Article  ADS  Google Scholar 

  14. S. Baskoutas, E. Paspalakis, A.F. Terzis, Phys. Rev. B 74, 153306 (2006)

    Article  ADS  Google Scholar 

  15. J. Jayarubi, A.J. Peter, C.W. Lee, Eur. Phys. J. D 73, 63 (2019)

    Article  ADS  Google Scholar 

  16. M. Kirak, S. Yilmaz, M. Şahin, M. Gencaslan, J. Appl. Phys. 109, 094309 (2011)

    Article  ADS  Google Scholar 

  17. M. Kirak, S. Yilmaz, Ü. Temizer, J. Nanoelectron. Optoelectron. 8, 165 (2013)

    Article  Google Scholar 

  18. B. Li, K.-X. Guo, Z.-L. Liu, Y.-B. Zheng, Phys. Lett. A 372, 1337 (2008)

    Article  ADS  Google Scholar 

  19. E.C. Niculescu, Mod. Phys. Lett. B 15, 545 (2001)

    Article  ADS  Google Scholar 

  20. M. Cristea, A. Radu, E.C. Niculescu, J. Lumin. 143, 592 (2013)

    Article  Google Scholar 

  21. E. Sadeghi, Physica E 41, 365 (2009)

    Article  ADS  Google Scholar 

  22. V.N. Mughnetsyan, M.G. Barseghyan, A.A. Kirakosyan, J. Contemp. Phys. 42, 287 (2007)

    Article  Google Scholar 

  23. O. Akankan, I. Erdogan, H. Akbas, Physica E 35, 217 (2006)

    Article  ADS  Google Scholar 

  24. I. Erdogan, O. Akankan, H. Akbas, Physica E 33, 83 (2006)

    Article  ADS  Google Scholar 

  25. L. Bouzaiene, H. Alamri, L. Sfaxi, H. Maaref, J. Alloys Compd. 655, 172 (2016)

    Article  Google Scholar 

  26. G. Liu, K.-X. Guo, H. Hassanabadi, L. Lu, Physica B 407, 3676 (2012)

    Article  ADS  Google Scholar 

  27. A. Hakimyfard, M.G. Barseghyan, A.A. Kirakosyan, Physica E 41, 1596 (2009)

    Article  ADS  Google Scholar 

  28. F.K. Boz, S. Aktas, A. Bilekkaya, S.E. Okan, Appl. Surf. Sci. 256, 3832 (2010)

    Article  ADS  Google Scholar 

  29. C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, L.E. Oliveira, J. Phys.: Condensed Matter 18, 1877 (2006)

    ADS  Google Scholar 

  30. H. El, A. Ghazi, I.Zorkani Jorio, Physica B 422, 47 (2013)

    Article  ADS  Google Scholar 

  31. L.J. Stevanović, J. Phys. B 43, 165002 (2010)

    Article  ADS  Google Scholar 

  32. V.A. Holovatsky, I. Bernik, O.M. Voitsekhivska, Acta Phys. Pol. A 125, 93 (2014)

    Article  ADS  Google Scholar 

  33. V.A. Holovatsky, O.M. Makhanets, O.M. Voitsekhivska, Physica E 41, 1522 (2009)

    Article  ADS  Google Scholar 

  34. A.R. Jafari, Physica B 446, 17 (2014)

    Article  ADS  Google Scholar 

  35. K.M. Kumar, A.J. Peter, C.W. Lee, Superlattices Microstruct. 51, 184 (2012)

    Article  ADS  Google Scholar 

  36. A. Özmen, Y. Yakar, B. Çakir, Ü. Atav, Optics Commun. 282, 3999 (2009)

    Article  ADS  Google Scholar 

  37. E. Sadeghi, Superlattices Microstruct. 50, 331 (2011)

    Article  ADS  Google Scholar 

  38. S. Yilmaz, H. Şafak, Physica E 36, 40 (2007)

    Article  ADS  Google Scholar 

  39. B. Çakir, Y. Yakar, A. Özmen, Optics Commun. 311, 222 (2013)

    Article  ADS  Google Scholar 

  40. Y. Yakar, B. Çakir, A. Özmen, Chem. Phys. 513, 213 (2018)

    Article  Google Scholar 

  41. S. Lumb, S. Lumb, V. Prasad, Eur. Phys. J. Plus 130, 149 (2015)

    Article  Google Scholar 

  42. N.M. Cann, A.J. Thakkar, J. Phys. B: At. Mol. Opt. Phys. 35, 421 (2002)

    Article  ADS  Google Scholar 

  43. S. Rajashabala, K. Navaneethakrishnan, Superlattices Microstruct. 43, 247 (2008)

    Article  ADS  Google Scholar 

  44. S. Rajashabala, K. Navaneethakrishnan, Mod. Phys. Lett. B 20, 1529 (2006)

    Article  ADS  Google Scholar 

  45. A.J. Peter, K. Navaneethakrishnan, Physica E 40, 2747 (2008)

    Article  ADS  Google Scholar 

  46. R. Khordad, Physica E 42, 1503 (2010)

    Article  ADS  Google Scholar 

  47. R. Khordad, Physica B 406, 3911 (2011)

    Article  ADS  Google Scholar 

  48. X.-H. Qi, X.-J. Kang, J.-J. Liu, Phys. Rev. B 58, 10578 (1998)

    Article  ADS  Google Scholar 

  49. A.J. Peter, Int. J. Mod. Phys. B 26, 5109 (2009)

    Article  ADS  Google Scholar 

  50. Y.-X. Li, J.-J. Liu, X.-J. Kang, J. Appl. Phys. 88, 2588 (2000)

    Article  ADS  Google Scholar 

  51. Y. Naimi, J. Vahedi, M.R. Soltani, Opt. Quantum Electron. 47, 2947 (2015)

    Article  Google Scholar 

  52. M. Köksal, E. Kilicarslan, H. Sari, I. Sökmen, Physica B 404, 3850 (2009)

    Article  ADS  Google Scholar 

  53. Z.-Y. Deng, J.-K. Guo, T.-R. Lai, Phys. Rev. B 50, 5736 (1994)

    Article  ADS  Google Scholar 

  54. W. Xie, Superlattices Microstruct. 53, 49 (2013)

    Article  ADS  Google Scholar 

  55. W. Xie, Physica B 407, 4588 (2012)

    Article  ADS  Google Scholar 

  56. Gh Safarpour, M.A. Izadi, M. Novzari, E. Niknam, M. Moradi, Physica E 59, 124 (2014)

    Article  ADS  Google Scholar 

  57. Gh Safarpour, M.A. Izadi, M. Novzari, S. Yazdanpanahi, Superlattices Microstruct 75, 936 (2014)

    Article  ADS  Google Scholar 

  58. H.D. Karki, S. Elagöz, P. Başer, Superlattices Microstruct. 48, 298 (2010)

    Article  ADS  Google Scholar 

  59. L. Lu, W. Xie, Z. Shu, Physica B 406, 3735 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Ghosh.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bera, A., Ghosh, A., Arif, S.M. et al. Exploring quadrupole oscillator strength of impurity doped quantum dots controlled by Gaussian white noise. Eur. Phys. J. D 74, 230 (2020). https://doi.org/10.1140/epjd/e2020-10424-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10424-9

Keywords

Navigation