Skip to main content
Log in

Microstructural design of high-strength aluminum alloys

  • Published:
Journal of Phase Equilibria

Abstract

A summary is presented of recent attempts to model the effects of precipitate shape, orientation, and distribution on yield strength and age-hardening response, using appropriate versions of the Orowan equation and models of precipitation strengthening developed for Al alloys containing a single uniform distribution of rationally oriented plate-or rod-shaped precipitates, which are either shearable or shear resistant. It is demonstrated that these models of particle strengthening are capable of predictions that are in excellent quantitative agreement with experimental observations that high tensile yield strength is associated with microstructures containing a high density of intrinsically strong, plate-shaped precipitates with {111}α or {100}α habit planes and large aspect ratio. The authors predict that further improvement in the strength of existing Al alloys might be achieved by increasing the number density and/or aspect ratio of rationally oriented precipitate plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Cited References

  1. A.E. Kolmogorov,Akad. Nauk. SSSR, IZV, Ser. Mat, 1, 355 (1937).

    Google Scholar 

  2. M. Avrami,J. Chem Phys., 7, 1103 (1939).

    Article  ADS  Google Scholar 

  3. W.A. Johnson and R.F. Mehl,Trans. AIME, 135, 416 (1939).

    Google Scholar 

  4. E. Orowan,Symposium on Internal Stresses in Metals and Alloys, Institute of Metals, London, 451 (1948).

    Google Scholar 

  5. I.M. Lifshitz and V.V. Slyozov,J. Phys. Chem. Solids, 19, 35 (1961).

    Article  ADS  Google Scholar 

  6. C. Wagner,Z. Electrochem., 65, 581 (1961).

    Google Scholar 

  7. J. Friedel,Electron Microscopy and Strength of Crystals, G. Thomas and J. Washburn, Ed., Interscience, New York, 605 (1963).

    Google Scholar 

  8. U.F. Kocks, “The Relation between Polycrystal Deformation and Single-Crystal Deformation,”Metall. Trans., 1, 1121–1143 (1970).

    Google Scholar 

  9. P.M. Kelly, “The Quantitative Relationship between Microstructure and Properties in Two-Phase Alloys,”Int. Met. Rev., 18, 31–36 (1973).

    Google Scholar 

  10. J. W. Christian,The Theory of Transformations inMetals and Alloys, Pergamon Press, Oxford (1975).

    Google Scholar 

  11. L.F. Mondolfo,Aluminium Alloys: Structure and Properties, Butterworths, London (1976).

    Google Scholar 

  12. S.F. Baumann and D.B. Williams, “ANew Method for the Determination of the Precipitate-Matrix Interfacial Energy,”Scr. Met, 18, 611–616 (1984).

    Article  Google Scholar 

  13. A.J. Ardell, “Precipitation Hardening,”Metall. Trans. A, 16A, 2131–2165 (1985).

    ADS  Google Scholar 

  14. A.J. Ardell, “Precipitation Strengthening: General Considerations,”Encyclopaedia of Materials Science and Engineering, Vol. 5, M.B. Bever, Ed., Pergamon Press, Oxford, UK, 3882–3887 (1986).

    Google Scholar 

  15. W. A. Cassada, G. J. Shiflet, and E. A. Starke, “The Effect of Germanium on the Precipitation and Deformation Behaviour of Al-2Li Alloys,“Acta Metall, 34, 367–378 (1986).

    Article  Google Scholar 

  16. J.C. Huang and A. J. Ardell, “Strengthening Mechanisms Associated with T1Particles in Two Al-Li-Cu Alloys,”J.Phys., C3(9), 373–383 (1987).

    Google Scholar 

  17. J.M. Howe, J. Lee, and A.K. Vasudevan, “Structure and Deformation Behaviour of T1 Precipitate Plates in an Al-2Li-lCu Alloy,”Metall. Trans.A, 19, 2911–2920 (1988).

    Article  Google Scholar 

  18. J.C. Huang and A.J. Ardell, “Addition Rules and the Contribution of δ′ Precipitates to Strengthening of Aged Al-Li-Cu Alloys,”Acta Metall., 36, 2995–3006 (1988).

    Article  Google Scholar 

  19. A.G. Khachaturyan, T.F. Lindsey and J.W Morris, Jr., “Theoretical Investigation of the Precipitation of δ′ in Al-Li,”Metall. Trans. A, 19A, 249–258 (1988).

    ADS  Google Scholar 

  20. I.J. Polmear and M.J. Couper, “Design and Development of an Experimental Wrought Aluminium Alloy for Use at Elevated Temperatures,”Metall. Trans.A, 19, 1027–1035 (1988).

    Article  Google Scholar 

  21. J.D. Embury, DJ. Lloyd, and T.R. Ramachandran, “Strengthening Mechanisms in Aluminium Alloys,”Aluminium Alloys: Contemporary Research and Applications, Treatise on Materials Science and Technology, Vol. 31, A.K. Vasudevan and R.D. Doherty, Ed., Academic Press, New York, NY, 579–601 (1989).

    Google Scholar 

  22. B.C. Muddle and I.J. Polmear, “The Precipitate Ω Phase in Al-Cu-Mg-Ag Alloys,”Acta Metall., 37, 777–789 (1989).

    Article  Google Scholar 

  23. J.R. Pickens, F.H. Heubaum, T.J. Langan, and L.S. Kramer, “Al-(4.5-6.3)Cu-1.3Li-0.4Ag-0.4Mg-0.14Zr Alloy Weldalite 049,”Proc. Fifth Int. Conf. on Aluminium-lithium Alloys, E.A. Starke and T.H. Sanders, Ed., Mat. and Comp. Eng. Publications, Birmingham, U.K., 1397–1414 (1989).

    Google Scholar 

  24. Metals Handbook, Vol. 2,10th Ed., ASM International, Materials Park, OH(1990).

  25. W.A. Cassada, G.J. Shiflet, and E.A. Starke, “The Effect of Plastic Deformation on Al2CuLi (T 1) Precipitation,”Metall. Trans. A, 22A, 299–306 (1991).

    ADS  Google Scholar 

  26. R. Wagner and R. Kampmann, “Homogeneous Second Phase Precipitation,”Materials Science and Technology: A Comprehensive Treatment, Vol. 5, R.W. Cahn, P. Haasen, and E.J. Kramer, Ed., VCH, Weinheim, Germany, 213–303 (1991).

    Google Scholar 

  27. V. Gerold, H.J. Gudladt, and J. Lendvai, “Microstructure and Deformation Behaviour of Age Hardenable Al-Li Single Crystals,”Phys. Status Solidi (a), 131, 509–522 (1992).

    Article  Google Scholar 

  28. G. Schmitz and P. Haasen, “Decomposition of an Al-Li Alloy-The Early Stages Observed by HREM,”Acta Metall. Mater., 40, 2209–2217 (1992).

    Article  Google Scholar 

  29. K. Trinckauf, J. Pesicka, C. Schlesier, and E. Nembach, “The Effect of the Volume Fraction on Precipitate Coarsening in Nickel-Based Superalloys and Aluminium-Lithium Alloys,”Phys. Status Solidi(a), 131, 345–355 (1992).

    Article  Google Scholar 

  30. E. Hombogen and E.A. Starke, “Theory Assisted Design of High StrengthLow Alloy Aluminium,” Acta Metall.Mater.,41, 1–16 (1993).

    Article  Google Scholar 

  31. B. Reppich, “Particle Strengthening,”Materials Science and Technology: A Comprehensive Treatment, Vol. 6, R.W. Cahn, P. Haasen, and E.J. Kramer, Ed., VCH, Weinheim, Germany, 311–357 (1993).

    Google Scholar 

  32. S.M. Jeonand, J.K. Park, “Transition Behaviour of Deformation Mode from Shearing to Looping in Al-Li Single Crystals,”Philos. Mag. A, 70, 493–504 (1994).

    Article  ADS  Google Scholar 

  33. B.C. Muddle, S.P. Ringer, and I.J. Polmear, “High Strength Microalloyed Aluminium Alloys,”Advanced Materials ’93, VI/Frontiers in Materials Science and Engineering, S. Somiya, M. Doyama, and R. Roy., Ed., Elsevier Science B.V., Tokyo, Japan; also inTrans. Mat. Res. Soc. Jpn., 19B, 999–1023 (1994).

    Google Scholar 

  34. I.J. Polmear,Light Alloys, 3rd ed., Edward Arnold, London (1995).

    Google Scholar 

  35. C. Schlesier and E. Nembach, “Strengthening of Aluminium-Lithium Alloys by Long-Range Ordered δ′ Precipitates,”Acta Metall. Mater, 43, 3983–3990 (1995).

    Article  Google Scholar 

  36. X. Gao, J.F. Nie, and B.C. Muddle, “High Strength Al-Cu-Mg(-Ag) Alloys with Controlled Si Additions,”Proc. Materials Research 96, Vol. 1, Institute of Metals and Materials Australasia, Melbourne, Australia, 33–36 (1996).

    Google Scholar 

  37. S.M. Jeon and J.K. Park, “Precipitation Strengthening Behaviour of Al-Li Single Crystals,”Acta Mater., 44, 1449–1455 (1996).

    Article  Google Scholar 

  38. J.F. Nie, B.C. Muddle, and I.J. Polmear, “The Effect of Precipitate Shape and Orientation on Dispersion Strengthening in High Strength Aluminium Alloys,”Mater. Sci. Forum, 217–222, 1257–1262 (1996).

    Article  Google Scholar 

  39. E. Nembach,Particle Strengthening of Metals and Alloys, John Wiley & Sons, Inc., New York (1997).

    Google Scholar 

  40. J.F. Nie and B.C. Muddle, unpublished work(1997).

  41. B. Noble, S J. Harris, and K. Dinsdale, “Microstructural Stability of Binary Al-Li Alloys at Low Temperatures,”Acta Mater, 45, 2069–2078 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, J.F., Muddle, B.C. Microstructural design of high-strength aluminum alloys. JPE 19, 543–551 (1998). https://doi.org/10.1361/105497198770341734

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497198770341734

Keywords

Navigation