Skip to main content
Log in

Carbonylation of cyclohexene to 2-cyclohexene-1-one by montmorillonite-supported Co(II) catalysts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A novel environmentally-friendly catalytic system for the carbonylation of cyclohexene with molecular oxygen under conditions of mild temperature, and under an atmospheric oxygen pressure is presented. In this system, a series of readily-prepared cobalt complexes of 2-aminophenol and its derivatives immobilised onto montmorillonite were used as catalysts. The catalysts were characterised by FT-IR, elemental analysis, thermogravimetric analysis, powder X-ray diffraction, diffuse reflectance ultraviolet visible spectra, scanning electron microscopic measurements, transmission electron microscopic measurements and the Brunauer-Emmett-Teller method. The effects of various reaction conditions such as catalyst dosage, temperature and time were optimised, obtaining an 88.7% conversion with 72.0% selectivity of 2-cyclohexene-1-one in 6 h. The results show that the catalytic activity of the cobalt complexes encapsulated in montmorillonite is higher than those of the free complexes. In addition, the heterogeneous catalysts were stable and can be recycled up to five times without any noticeable change in the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bizaia, N., de Faria, E. H., Ricci, G. P., Calefi, P. S., Nassar, E. J., Castro, K. A., & Korili, S. A. (2009). Porphyrin-kaolinite as efficient catalyst for oxidation reactions. ACS Applied Materials & Interfaces, 1, 2667–2678. DOI: 10.1021/am900556b.

    Article  CAS  Google Scholar 

  • Cao, Y. H., Yu, H., Peng, F., & Wang, H. J. (2014). Selective allylic oxidation of cyclohexene catalyzed by nitrogen-doped carbon nanotubes. ACS Catalysis, 4, 1617–1625. DOI: 10.1021/cs500187q.

    Article  CAS  Google Scholar 

  • Chang, Y., Lv, Y. R., Lu, F., Zha, F., & Lei, Z. Q. (2010). Efficient allylic oxidation of cyclohexene with oxygen catalyzed by chloromethylated polystyrene supported tridentate Schiffbase complexes. Journal of Molecular Catalysis A: Chemical, 320, 56–61. DOI: 10.1016/j.molcata.2010.01.003.

    Article  CAS  Google Scholar 

  • Chary, K. V. R., Kishan, G., Kumar, C. P., & Sagar, G. V. (2003). Structure and catalytic properties of vanadium oxide supported on alumina. Applied Catalysis A: General, 246, 335–350. DOI: 10.1016/s0926-860x(03)00052-8.

    Article  CAS  Google Scholar 

  • Chidambaram, M., Venkatesan, C., & Singh, A. (2006). Organosilanesulfonic acid-functionalized Zr-TMS catalysts: synthesis, characterization and catalytic applications in condensation reactions. Applied Catalysis A: General, 310, 79–90. DOI: 10.1016/j.apcata.2006.05.024.

    Article  CAS  Google Scholar 

  • Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalysis, 289, 259–265. DOI: 10.1016/j.jcat.2012.02.015.

    Article  CAS  Google Scholar 

  • El-Ajaily, M. M., Maihub, A. A., & Filog, S. M. (2006). Synthesis and characterization of some Co(II), Ni(II) and Cu(II) mixed ligand chelates of 8-hydroxyquinoline, anthranilic acid and o-aminophenol. Asian Journal of Chemistry, 18, 2421–2426.

    CAS  Google Scholar 

  • Ghadiri, M., Farzaneh, F., Ghandi, M., & Alizadeh, M. (2005). Immobilized copper(II) complexes on montmorillonite and MCM-41 as selective catalysts for epoxidation of alkenes. Journal of Molecular Catalysis A: Chemical, 233, 127–131. DOI: 10.1016/j.molcata.2005.01.046.

    Article  CAS  Google Scholar 

  • Gupta, K. C., & Sutar, A. K. (2008a). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252, 1420–1450. DOI: 10.1016/j.ccr.2007.09.005.

    Article  CAS  Google Scholar 

  • Gupta, K. C., & Sutar, A. K. (2008b). Catalytic activities of polymer-supported metal complexes in oxidation of phenol and epoxidation of cyclohexene. Polymers for Advanced Technologies, 19, 186–200. DOI: 10.1002/pat.994.

    Article  CAS  Google Scholar 

  • Joseph, T., Halligudi, S. B., Satyanarayan, C., Sawant, D. P., & Gopinathan, S. (2001). Oxidation by molecular oxygen using zeolite encapsulated Co(II)saloph complexes. Journal of Molecular Catalysis A: Chemical, 168, 87–97. DOI: 10.1016/s1381-1169(00)00443-x.

    Article  CAS  Google Scholar 

  • Jurado-Gonzalez, M., Sullivan, A. C., & Wilson, J. R. H. (2003). Allylic and benzylic oxidation using cobalt(II) alkyl phosphonate modified silica. Tetrahedron Letters, 44, 4283–4286. DOI: 10.1016/s0040-4039(03)00833-5.

    Article  CAS  Google Scholar 

  • Kameyama, H., Narumi, F., Hattori, T., & Kameyama, H. (2006). Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite. Journal of Molecular Catalysis A: Chemical, 258, 172–177. DOI: 10.1016/j.molcata.2006.05.022.

    Article  CAS  Google Scholar 

  • Kianfar, A. H., Mahmood, W. A. K., Dinari, M., Farrokhpour, H., Enteshari, M., & Azarian, M. H. (2014a). Immobilization of cobalt(III) Schiff base complexes onto montmorillonite-K10: Synthesis, experimental and theoretical structural determination. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1582–1592. DOI: 10.1016/j.saa.2014.10.051.

    Article  Google Scholar 

  • Kianfar, A. H., Mahmood, W. A. K., Dinari, M., Azarian, M. H., & Khafri, F. Z. (2014b). Novel nanohybrids of cobalt(III) Schiff base complexes and clay: synthesis and structural determinations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 422–428. DOI: 10.1016/j.saa.2014.02.089.

    Article  CAS  Google Scholar 

  • Li, Z. Y., Tang, R. R., & Liu, G. Y. (2013). Immobilized into montmorillonite Mn(II) complexes of novel pyridine Schiffbase ligands and their catalytic reactivity in epoxidation of cyclohexene with O2. Catalysis Letters, 143, 592–599. DOI: 10.1007/s10562-013-1002-x.

    Article  CAS  Google Scholar 

  • Liu, L., Wang, L., & Jia, D. Z. (2008). Preparation of cobalt and nickel complexes of 8-hydroxyquinoline with nanobelt structureviaone-step, low-heating, solid-state reactions. Journal of Coordination Chemistry, 61, 1019–1026. DOI: 10.1080/00958970701477503.

    Article  CAS  Google Scholar 

  • Liu, G. Y., Tang, R. R., & Wang, Z. (2014). Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide. Catalysis Letters, 144, 717–722. DOI: 10.1007/s10562-014-1200-1.

    Article  CAS  Google Scholar 

  • Lu, Y. D., Nguyen, P. L., Lévaray, N., & Lebel, H. (2013). Palladium-catalyzed Saegusa-Ito oxidation: synthesis of α, β-unsaturated carbonyl compounds from trimethylsilyl enol ethers. Journal of Organic Chemistry, 78, 776–779. DOI: 10.1021/jo302465v.

    Article  CAS  Google Scholar 

  • Mao, J. Y., Li, N., Li, H. R., & Hu, X. B. (2006). Novel Schiff base complexes as catalysts in aerobic selective oxidation of β-isophorone. Journal of Molecular Catalysis A: Chemical, 258, 178–184. DOI: 10.1016/j.molcata.2006.05.051.

    Article  CAS  Google Scholar 

  • Masui, Y., Wang, J. C., Teramura, K., Kogure, T., Tanaka, T., & Onaka, M. (2014). Unique structural characteristics of tin hydroxide nanoparticles-embedded montmorillonite (Sn-Mont) demonstrating efficient acid catalysis for various organic reactions. Microporous and Mesoporous Materials, 198, 129–138. DOI: 10.1016/j.micromeso.2014.07.024.

    Article  CAS  Google Scholar 

  • Maurya, R. C., Sharma, P., & Sutradhar, D. (2003). Synthesis, magnetic, and spectral studies of some mixed-ligand complexes of copper(II) involving diphenic acid and pyridine or aniline derivatives. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 33, 669–682. DOI: 10.1081/sim120020331.

    Article  CAS  Google Scholar 

  • Motahari, F., Mozdianfard, M. R., Soofivand, F., & Salavati-Niasari, M. (2014). NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Advances, 2014, 27654–27660. DOI: 10.1039/c4ra02697g.

    Article  Google Scholar 

  • Nammalwar, B., Fortenberry, C., Bunce, R. A., Lageshetty, S. K., & Ausman, K. D. (2013). Efficient oxidation of arylmethylene compounds using nano-MnO2. Tetrahedron Letters, 54, 2010–2013. DOI: 10.1016/j.tetlet.2013.02.009.

    Article  CAS  Google Scholar 

  • Parida, K., Varadwaj, G. B. B., Sahu, S., & Sahoo, P. C. (2011). Schiff base Pt(II) complex intercalated montmorillonite: a robust catalyst for hydrogenation of aromatic nitro compounds at room temperature. Industrial & Engineering Chemistry Research, 50, 7849–7856. DOI: 10.1021/ie200128w.

    Article  CAS  Google Scholar 

  • Sabet, M., Salavati-Niasari, M., & Amiri, O. (2014). Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochimica Acta, 117, 504–520. DOI: 10.1016/j.electacta.2013.11.176.

    Article  CAS  Google Scholar 

  • Sakthivel, A., & Selvam, P. (2002). Mesoporous (Cr)MCM-41: a mild and efficient heterogeneous catalyst for selective oxidation of cyclohexane. Journal of Catalysis, 211, 134–143. DOI: 10.1006/jcat.2002.3711.

    Article  CAS  Google Scholar 

  • Salavati-Niasari, M., & Amiri, A. (2005). Synthesis and characterization of alumina-supported Mn(II), Co(II), Ni(II) and Cu(II) complexes of bis(salicylaldiminato)hydrazone as catalysts for oxidation of cyclohexene with tert-buthylhydroperoxide. Applied Catalysis A: General, 290, 46–53. DOI: 10.1016/j.apcata.2005.05.009.

    Article  CAS  Google Scholar 

  • Salavati-Niasari, M. (2007). Synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen over host (montmorillonite-K10)/guest (nickel(II) complexes of 12- and 13-membered diaza dioxa Schiff-base macrocyclic ligand) nanocatalyst (HGN). Journal of Molecular Catalysis A: Chemical, 263, 247–252. DOI: 10.1016/j.molcata.2006.09.007.

    Article  CAS  Google Scholar 

  • Salavati-Niasari, M., Zamani, E., Ganjali, M. R., & Norouzi, P. (2007a). Synthesis, characterization and liquid phase oxidation of cyclohexanol using tert-butylhydroperoxide over host (zeolite-Y)/guest (copper(II) complexes of 12- and 13-membered diaza dioxa Schiff-base macrocyclic ligand) nanocomposite materials (HGNM). Journal of Molecular Catalysis A: Chemical, 261, 196–201. DOI: 10.1016/j.molcata.2006.05.053.

    Article  CAS  Google Scholar 

  • Salavati-Niasari, M., Shaterian, M., Ganjali, M. R., & Norouzi, P. (2007b). Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of N,N′-bis(salicylidene)phenylene-1,3-diamine) nanocomposite materials (HGNM). Journal of Molecular Catalysis A: Chemical, 261, 147–155. DOI: 10.1016/j.molcata.2006.07.048.

    Article  CAS  Google Scholar 

  • Schiavon, M. A., Iamamoto, Y., Nascimento, O. R., & das Dorres Assis, M. (2001). Catalytic activity of nitro- and carboxy-substituted iron porphyrins in hydrocarbon oxidation: Homogeneous solution and supported systems. Journal of Molecular Catalysis A: Chemical, 174, 213–222. DOI: 10.1016/s1381-1169(01)00176-5.

    Article  CAS  Google Scholar 

  • Sehlotho, N., & Nyokong, T. (2004). Catalytic activity of iron and cobalt phthalocyanine complexes towards the oxidation of cyclohexene using tert-butylhydroperoxide and chloroperoxybenzoic acid. Journal of Molecular Catalysis A: Chemical, 209, 51–57. DOI: 10.1016/j.molcata.2003.08.014.

    Article  CAS  Google Scholar 

  • Sorokin, A. B. (2013). Phthalocyanine metal complexes in catalysis. Chemical Reviews, 113, 8152–8191. DOI: 10.1021/cr4000072.

    Article  CAS  Google Scholar 

  • Titinchi, S. J. J., & Abbo, H. S. (2013). Salicylaldiminato chromium complex supported on chemically modified silica as highly active catalysts for the oxidation of cyclohexene. Catalysis Today, 204, 114–124. DOI: 10.1016/j.cattod.2012.08.040.

    Article  CAS  Google Scholar 

  • Tong, J. H., Zhang, Y., Li, Z., & Xia, C. G. (2006). Highly effective catalysts of natural polymer supported salophen Mn(III) complexes for aerobic oxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 249, 47–52. DOI: 10.1016/j.molcata.2005.12.031.

    Article  CAS  Google Scholar 

  • Varadwaj, G. B. B., Sahu, S., & Parida, K. (2011). La complex@Fe—PILM offering resilient option for efficient and green processing toward epoxidation of cyclohexene. Industrial & Engineering Chemistry Research, 50, 8973–8982. DOI: 10.1021/ie2002445.

    Article  CAS  Google Scholar 

  • Xu, L., Wu, W. X., Ding, J., Feng, S., Xing, X. W., Deng, M. Q., & Zhou, X. (2012). A pyridyl carboxamide molecule selectively stabilizes DNA G-quadruplex and regulates duplexquadruplex competition. RSC Advances, 2012, 894–899. DOI: 10.1039/c1ra00851j.

    Article  Google Scholar 

  • Yang, L., Wu, Z. Q., Liang, L., & Zhou, X. G. (2009a). Synthesis, crystal structures and catalytic abilities of new macrocyclic bis-pyridineamido MnIII and FeIII complexes. Journal of Organometallic Chemistry, 694, 2421–2426. DOI: 10.1016/j.jorganchem.2009.03.019.

    Article  CAS  Google Scholar 

  • Yang, X. M., Zhou, L. P., Chen, Y., Chen, C. L., Su, Y. L., Miao, H., & Xu, J. (2009b). A promotion effect of alkaline-earth chloride on N-hydroxyphthalimide-catalyzed aerobic oxidation of hydrocarbons. Catalysis Communications, 11, 171–174. DOI: 10.1016/j.catcom.2009.09.019.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Ren Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Tang, RR. & Zhou, Y. Carbonylation of cyclohexene to 2-cyclohexene-1-one by montmorillonite-supported Co(II) catalysts. Chem. Pap. 69, 1156–1165 (2015). https://doi.org/10.1515/chempap-2015-0130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0130

Keywords

Navigation