Skip to main content
Log in

Effects of Alien Substitutions of Chromosomes of Homoeologous Group 7 on the Heading Time of Wheat–barley Substitution Lines (Triticum aestivum L. – Hordeum marinum ssp. gussoneanum 4x Hudson)

  • Genetics
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

The effects of alien substitutions of chromosomes on the heading time of ditelosomic (DT) wheat–barley substitution lines in which the chromosome 7HLmar from Hordeum marinum ssp. gussoneanum 4x replaced the chromosomes 7A, 7B and 7D of common wheat were studied. The plants were grown under short and long day illumination in greenhouse and in the field. The lines studied were found to differ in response to the length of the day. Under short day conditions, DT7HLmar(7B) and DT7HLmar(7A) showed an increase in the period before heading. In this case, the substitution effect of chromosome 7B was more significant than the effect of chromosome 7A. Under these conditions, the substitution of chromosome 7D did not have a significant effect on the heading time. Under long day conditions in the greenhouse and under natural conditions of a long day in the Novosibirsk region, substitution lines came into ear earlier than under a short day conditions and did not differ in the heading time. Allele-specific primers established the allelic composition of the genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in ditelosomic lines. It was shown that the two DT7HLmar(7A) and DT7HLmar(7D) lines have the same genotype -VRN-A1b/VRN-B1c/vrn-D1/ vrn-B3 and that the DT7HLmar(7B) line has the genotype -VRN-A1a/VRN-B1c/vrn-D1. The results show that regardless of the genotype for the Vrn genes, the wheat-barley substitution lines react to the change in the photoperiod, especially in the absence of chromosomes 7B and 7A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aliev, E.B., Maystrenko, O.I. 1986. A precise determination of number of genes involved in photoperiodic response in spring wheats with different sensitivity to natural short day light. Cereal Res. Commun. 14:129–131.

    Google Scholar 

  • Beales, J., Turner, A., Griffiths, S., Snape, J.W., Laurie, D.A. 2007. A pseudo-response regulator is misex-pressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115:721–733.

    Article  CAS  Google Scholar 

  • Bothmer, R., Jacobsen, N., Baden C., Jorgensen, R., Linde-Laursen, I. 1991. An ecogeographical study of the genus Hordeum. IBPGR, 1991. Italy, Rome, 127 p.

  • Bonnin, I., Rousset, M., Madur, D., Sourdille, P., Dupuits, C., Brunel, D., Goldringer, I. 2008. FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor. Appl. Genet. 116:383–394.

    Article  CAS  Google Scholar 

  • Börner, A., Buck-Sorlin, G.H., Hayes, P.M., Malyshev, S., Korzun, V. 2002. Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breed 121:129–132. doi:10.1046/j.1439-0523.2002.00691.x.

    Article  Google Scholar 

  • Cane, K., Eagles, H.A., Laurie, D.A., Trevaskis, B., Vallance, N., Eastwood, R.F., Gororo, N.N., Kuchel, H., Martin, P.J. 2013. Ppd-B1 and Ppd-D1 and their effects in southern Australian wheat. Crop and Pasture Science. 64:100–114.

    Article  CAS  Google Scholar 

  • Ceoloni, C., Jauhar, P.P. 2006. Chromosome engineering of the durum wheat genome: strategies and applications of potential breeding value. In: Singh, R.J., Jauhar, P.P. (eds) Genetic resources, chromosome engineering, and crop improvement: cereals. Boca Raton, FL: CRC Press, Taylor & Francis Group, pp. 27–59.

    Chapter  Google Scholar 

  • Chen, F., Gao, M., Zhang, J., Zuo, A., Shang, X., Cui, D. 2013. Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China. BMC Plant Biol. 13:199.

    Article  Google Scholar 

  • Edwards, K., Johnstone, C., Thompson, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR Analysis. Nucl. Acids Res. 19:1349.

    Article  CAS  Google Scholar 

  • Efremova, T.T., Maystrenko, O.I., Arbuzova, V.S., Laikova, L.I., Panina, G.M., Popova, O.M., Berezova, O.V. 2006. Effect of alien 5R(5A) chromosome substitution on ear-emergence time and winter hardiness in wheat-rye substitution lines. Euphytica 151:145–153.

    Article  CAS  Google Scholar 

  • Efremova, T.T., Arbuzova, V.S., Leonova, I.N., Makhmudova, K. 2011. Multiple allelism in the Vrn-B1 locus of common wheat. Cereal Res. Comm. 39(1):12–21.

    Article  Google Scholar 

  • Efremova, T., Arbuzova,V., Trubacheeva, N., Ocadchaya, T., Chumanova, E., Pershina, L. 2013. Substitution of Hordeum marinum ssp. gussoneanum chromosome 7HL into wheat homoeologous group-7. Euphytica 192:251–257.

    Article  Google Scholar 

  • Efremova, T.T., Chumanova, E.V., Trubacheeva, N.V., Pershina, L.A. 2018. Compensation ability between the chromosomes of homoeologous group 7 of Triticum aestivum L. and Hordeum marinum ssp. gussoneanum Hudson (2n = 28) and analysis of the transmission frequency of alien 7H1Lmar chromosome through gametes in the progeny of wheat–barley substitution lines. Russ. J. Genet. 54:1050–1058.

    Article  CAS  Google Scholar 

  • Farkas, A., Molnár, I., Kiss, T., Karsai, I., Molnár-Láng, M. 2014. Effect of added barley chromosomes on the flowering time of new wheat/winter barley addition lines in various environments. Euphytica 195:45–55.

    Article  Google Scholar 

  • Fu, D., Szucs, P., Yan, L., Helguera, M., Skinner, J.S., von Zitzewitz, J., Hayes, P.M., Dubcovsky, J. 2005. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Gen. Genomics 273:54–65.

    Article  CAS  Google Scholar 

  • Garthwaite, A.J., Von Bothmer, R., Colmer, T.D. 2005. Salt tolerance in wild Hordeum species associated with restricted entry of Na+ and Cl into the shoots. J. Exp. Bot. 56:2365–2378.

    Article  CAS  Google Scholar 

  • Guo, Z., Song, Y., Zhou, R., Ren, Z., Jia, J. 2010. Discovery, evaluation and distribution of haplotypes of the Ppd-D1 gene. New Phytol. 185:841–851.

    Article  CAS  Google Scholar 

  • Halloran, G.H., Boydell, C.W. 1967. Wheat chromosomes with genes for photoperiodic response. Can. J. Genet. Cytol. 22:394–398.

    Article  Google Scholar 

  • Islam, S., Malik, A.I., Islam, A.K.M.R., Colmer, T.D. 2007. Salt tolerance in a Hordeum marinum–Triticum aestivum amphiploid, and its parents. J. Exper. Botany 58:1219–1229.

    Article  CAS  Google Scholar 

  • Jakob, S.S., Ihlow, A., Blattner, F.R. 2007. Combined ecological niche modelling and molecular phylogeography revealed the evolutionary history of Hordeum marinum (Poaceae)-niche differentiation, loss of genetic diversity, and speciation in Mediterranean Quaternary refugia. Molecular Ecology 16:1713–1727.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., Giura, A., Röder, M.S., Börner, A. 2009. A new gene controlling the flowering response to photoperiod in wheat. Euphytica 165:579–585.

    Article  CAS  Google Scholar 

  • Kuchel, H., Hollamby, G., Langridge, P., Williams, K., Jefferies, S.P. 2006. Identification of genetic loci associated with ear emergence in bread wheat. Theor. Appl. Genet. 113:1103–1112.

    Article  CAS  Google Scholar 

  • Law, C.N. 1972. The analysis of inter-varietal chromosome substitutions in wheat and their first generation hybrids. Heredity 28:169–179.

    Article  Google Scholar 

  • Law, C.N., Worland, A.J., Giorgi, B. 1976. The genetic control of ear emergence by chromosomes 5A and 5D of wheat. Heredity 36:49–58.

    Article  Google Scholar 

  • Law, C.N., Sutka, J., Worland, A.J. 1978. A genetic study of day-length response in wheat. Heredity 41:185–191.

    Article  Google Scholar 

  • Law, C.N., Worland, A.J. 1997. Genetic analysis of some flowering time and adaptative traits wheat. New Phytologist 137:19–28.

    Article  Google Scholar 

  • Milec, Z., Tomková, L., Sumíová, T., Pánková, K. 2012. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol. Breeding 30:317–323.

    Article  CAS  Google Scholar 

  • Murai, K., Koba, T., Shimada, T. 1997. Effect of barley chromosome on heading characters in wheat-barley chromosome addition lines. Euphytica 96:281–287.

    Article  Google Scholar 

  • Pirasteh, B., Welsh, J.R. 1975. Monosomic analysis of photoperiod response in wheat. Crop. Sci. 15:503–0505.

    Article  Google Scholar 

  • Qi, L.L., Friebe, B., Zhang, P., Gill, B.S. 2007. Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res. 15:3–19.

    Article  CAS  Google Scholar 

  • Scherban, A.B., Efremova, T.T., Salina, E.A. 2012. Identification of a new Vrn-B1 allele using two near-isogenic wheat lines with difference in heading time. Mol. Breeding 29:675–685.

    Article  Google Scholar 

  • Sears, E.R. 1954. The aneuploids of common wheat. Research Bulletin Missouri Agricultural Experiment Station. 572:1–59.

    Google Scholar 

  • Snape, J.W., Law, C.N., Parker, B.B., Worland, A.J. 1985. Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor. Appl. Genet. 71:518–526.

    Article  CAS  Google Scholar 

  • Snape, J.W., Butterworth, K., Whitechurch, E., Worland, A.J. 2001. Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190.

    Article  CAS  Google Scholar 

  • Worland, A.J., Börner, A., Korzun, V., Li, W.M., Petrovic, S., Sayers, E. J. 1998. The influence of photoperiod on the adaptability of European winter wheats. Euphytica 100:385–394.

    Article  CAS  Google Scholar 

  • Yan, L., Helguera, M., Kato, K., Fukuyama, S., Sherman, J., Dubcovsky, J. 2004. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109:1677–1686.

    Article  CAS  Google Scholar 

  • Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., Sanchez, A., Valarik, M., Yasuda, S., Dubcovsky, J. 2006. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA. 103:19581–19586.

    Article  CAS  Google Scholar 

  • Yoshida, T., Nishida, H., Zhu, J., Nitcher, R., Distelfeld, A., Akashi, Y., Kato, K., Dubcovsky, J. 2010. Vrn-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor. Appl. Genet. 120:543–552.

    Article  CAS  Google Scholar 

  • Zhang, X.K., Xia, X.C., Xiao, Y.G., Dubcovsky, J., He, Z.H. 2008. Allelic variation at vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese common wheat cultivars and their association with growth habit. Crop Sci. 48:458–470.

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, Y., Wu, S., Yang, J., Liu, H., Zhou, Y. 2012. A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theor. Appl. Genet. 125:1697–1704.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Efremova.

Additional information

Communicated by M. Molnár-Láng

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumanova, E.V., Efremova, T.T., Trubacheeva, N.V. et al. Effects of Alien Substitutions of Chromosomes of Homoeologous Group 7 on the Heading Time of Wheat–barley Substitution Lines (Triticum aestivum L. – Hordeum marinum ssp. gussoneanum 4x Hudson). CEREAL RESEARCH COMMUNICATIONS 47, 11–21 (2019). https://doi.org/10.1556/0806.46.2018.067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/0806.46.2018.067

Keywords

Navigation