Skip to main content
Log in

Genetic Variability of Kernel Provitamin-A in Sub-tropically Adapted Maize Hybrids Possessing Rare Allele of β-carotene hydroxylase

  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Vitamin-A deficiency is a major health concern. Traditional yellow maize possesses low provitamin-A (proA). Mutant crtRB1 gene significantly enhances proA. 24 experimental hybrids possessing crtRB1 allele were evaluated for β-carotene (BC), β-cryptoxanthin (BCX), lutein (LUT), zeaxanthin (ZEA), total carotenoids (TC) and grain yield at multi-locations. BC (0.64–17.24 µg/g), BCX (0.45–6.84 µg/g), proA (0.86–20.46 µg/g), LUT (9.60–31.03 µg/g), ZEA (1.24–12.73 µg/g) and TC (20.60–64.02 µg/g) showed wide variation. No significant genotype × location interaction was observed for carotenoids. The mean BC (8.61 µg/g), BCX (4.04 µg/g) and proA (10.63 µg/g) in crtRB1-based hybrids was significantly higher than normal hybrids lacking crtRB1-favourable allele (BC: 1.73 µg/g, BCX: 1.29 µg/g and proA: 2.37 µg/g). Selected crtRB1-based hybrids possessed 33% BC and 40% BCX compared to 6% BC and 5% BCX in normal hybrids. BC showed positive correlation with BCX (r = 0.90), proA (r = 0.99) and TC (r = 0.64) among crtRB1-based hybrids. Carotenoids didn’t show association with grain yield. Average yield potential of proA rich hybrids (6794 kg/ha) was at par with normal hybrids (6961 kg/ha). PROAH-13, PROAH-21, PROAH-17, PROAH-11, PROAH-23, PROAH-24 and PROAH-3 were the most promising with >12 µg/g proA and >6000 kg/ha grain yield. The newly identified crtRB1-based hybrids assume significance in alleviating malnutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouis, H.E., Saltzman, A. 2017. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Secur. 12:49–58.

    Article  Google Scholar 

  • Chander, S., Guo, Y.Q., Yang, X.H., Zhang, J., Lu, X.Q., Yan, J.B. 2008. Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor. Appl. Genet. 116:223–233.

    Article  CAS  Google Scholar 

  • Choudhary, M., Hossain, F., Muthusamy, V., Thirunavukkarasu, N., Saha, S., Pandey, N., Jha, S.K., Gupta, H.S. 2015. Microsatellite marker-based genetic diversity analyses of novel maize inbreds possessing rare allele of β-carotene hydroxylase (crtRB1) for their utilization in β-carotene enrichment. J. Plant Biochem. Biotech. 25:12–20.

    Article  Google Scholar 

  • Choudhary, M., Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Pandey, N., Jha, S.K., Gupta, H.S. 2014. Characterization of β-carotene rich MAS-derived maize inbreds possessing rare genetic variation in β-carotene hydroxylase gene. Indian J. Genet. 74:620–623.

    Google Scholar 

  • Egesel, C.O., Wong, J.C., Lambert, R.J., Rocheford, T.R. 2003. Gene dosage effects on carotenoid concentration in maize grain. Maydica 48:183–190.

    Google Scholar 

  • Fraser, P.D., Bramley, P.M. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lip. Res. 43:228–265.

    Article  CAS  Google Scholar 

  • Global Nutrition Report. 2017. Retrived from website https://doi.org/www.globalnutrition report.org.

  • Gupta, H.S., Hossain, F., Muthusamy, V. 2015. Biofortification of maize: An Indian perspective. Indian J. Genet. 75:1–22.

    Google Scholar 

  • Howitt, C.A., Pogson, B.J. 2006. Carotenoid accumulation and function in seeds and non-green tissues. PlantCell Environ. 29:435–445.

    CAS  Google Scholar 

  • IFPRI 2016. Retrived from website, https://doi.org/www.ifpri.org/publication/donor-progress-2016-nutrition-growth-tracking-table

  • Kurilich, A.C., Juvik, J.A. 1999. Quantification of carotenoid and tocopherol antioxidants in Zea mays. J. Agric. Food Chem. 47:1948–1955.

    Article  CAS  Google Scholar 

  • Menkir, A., Brown, R.L., Bandyopadhyay, R., Cleveland, T.E. 2008. Registration of six tropical maize germplasm lines with resistance to aflatoxin contamination. J. Plant Registrations 2:246–250.

    Article  Google Scholar 

  • Muthusamy, V., Hossain, F., Nepolean, T., Saha, S., Agrawal, P.K., Guleria, S.K., Gupta, H.S. 2015a. Genetic variability and inter-relationship of kernel carotenoids among indigenous and exotic maize (Zea mays L.) inbreds. Cereal Res. Comm. 43:567–578.

    Article  CAS  Google Scholar 

  • Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Pandey, N., Vishwakarma, A.K., Saha, S., Gupta, H.S. 2015c. Molecular characterization of exotic and indigenous maize inbreds for biofortification with kernel carotenoids. Food Biotechnol. 29:276–295.

    Article  CAS  Google Scholar 

  • Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Choudhary, M., Saha, S., Bhat, J.S., 2014. Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:1–22.

    Article  Google Scholar 

  • Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Saha, S., Agrawal, P.K., Gupta, H.S. 2016. Genetic analyses of kernel carotenoids in novel maize genotypes possessing rare allele of β-carotene hydroxylase gene. Cereal Res. Commun. 44:669–680.

    Article  CAS  Google Scholar 

  • Muthusamy, V., Hossain, F., Thirunavukkarasu, N., Saha, S., Gupta, H.S. 2015b. Allelic variations for lycopene-ε-cyclase and β-carotene hydroxylase genes in maize inbreds and their utilization in β-carotene enrichment programme. Cogent Food Agric. 1.

  • Neeraja, C.N., Babu, V.R., Ram, S., Hossain, F., Hariprasanna, K., Rajpurohit, B.S. 2017. Biofortification in cereals:progress and prospects. Curr. Sci. 113:1050–1057.

    Article  Google Scholar 

  • Sarika, K., Hossain, F., Muthusamy, V., Zunjare, R.U., Baveja, A., Goswami, R., Bhat, J.S., Saha, S., Gupta, H.S. 2018. Marker-assisted pyramiding of opaque2 and novel opaque16 genes for further enrichment of lysine and tryptophan in sub-tropical maize. Plant Sci. 272:142–152.

    Article  CAS  Google Scholar 

  • Vignesh, M., Nepolean, T., Hossain, F., Singh, A.K., Gupta, H.S. 2013. Sequence variation in 3′UTR region of crtRB1 gene and its effect on β-carotene accumulation in maize kernel. J. Plant Biochem. Biotech. 22:401–408.

    Article  CAS  Google Scholar 

  • Vignesh, M., Hossain, F., Nepolean, T., Supradip, S., Agrawal, P.K., Guleria, S.K. 2012. Genetic variability for kernel β-carotene and utilization of crtRB1 3’TE gene for biofortification in maize (Zea mays L.). Indian J. Genet. 72:189–194.

    CAS  Google Scholar 

  • Wong, J.C., Lambert, R.J., Wurtzel, E.T., Rocheford, T.R. 2004. QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor. Appl. Genet. 108:349–359.

    Article  CAS  Google Scholar 

  • Yadava, D.K., Choudhury, P.R., Hossain, F., Kumar, D. 2017. Biofortified varieties:sustainable way to alleviate malnutrition. ICAR, New Delhi. pp. 1–32.

    Google Scholar 

  • Yan, J., Kandianis, C.B., Harjes, C.E., Bai, L., Kim, E.H., Yang, X. 2010. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat. Genet. 42:322–327.

    Article  CAS  Google Scholar 

  • Zunjare, R.U., Chhabra, R., Hossain, F., Baveja, A., Muthusamy, V., Gupta, H.S. 2018b. Molecular characterization of 5′ UTR of the lycopene epsilon cyclase (lcyE) gene among exotic and indigenous inbreds for its utilization in maize biofortification. 3Biotech 8:75.

    Google Scholar 

  • Zunjare, R.U., Chhabra, R., Hossain, F., Muthusamy, V., Baveja, A., Gupta, H.S. 2018c. Development and validation of multiplex-PCR assay for simultaneous detection of rare alleles of crtRB1 and lcyE governing higher accumulation of provitamin A in maize kernel. J. Plant Biochem.Biotechnol. 2:208–214.

    Google Scholar 

  • Zunjare, R.U., Hossain, F., Muthusamy, V., Baveja, A., Chauhan, H.S., Bhat, J.S., Thirunavukkarasu, N., Saha, S., Gupta, H.S. 2018a. Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene-ε-cyclase and opaque2 genes. Front. Plant Sci. 9:178.

    Article  Google Scholar 

  • Zunjare, R.U., Hossain, F., Muthusamy, V., Baveja, A., Chauhan, H.S., Thirunavukkarasu, N., Saha, S., Gupta, H.S. 2017. Influence of rare alleles of β-carotene hydroxylase and lycopene epsilon cyclase genes on accumulation of provitamin A carotenoids in maize kernels. Plant Breed. 136:872–880.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hossain.

Additional information

Communicated by R.N. Chibbar

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, R., Zunjare, R.U., Khan, S. et al. Genetic Variability of Kernel Provitamin-A in Sub-tropically Adapted Maize Hybrids Possessing Rare Allele of β-carotene hydroxylase. CEREAL RESEARCH COMMUNICATIONS 47, 205–215 (2019). https://doi.org/10.1556/0806.47.2019.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1556/0806.47.2019.12

Keywords

Navigation