Skip to main content
Log in

Size dependent thermal vibrations and melting in nanocrystals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A simple model for the size-dependent amplitude of the atomic thermal vibrations of a nanocrystal is presented which leads to the development of a model for the size dependent melting temperature in nanocrystals on the basis of Lindemann's criterion. The two models are in terms of a directly measurable parameter for the corresponding bulk crystal, i.e., the ratio between the amplitude of thermal vibrations for surface atoms and that for interior ones. It is shown that the present model for the melting temperature offers not only a qualitative but even an excellent quantitative agreement with the experimentally observed size-dependent superheating, as well as melting point suppression in both the supported and embedded metallic and semiconductor nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Somoriai, Chemistry in Two Dimensions: Surfaces (Cornell University Press, Ithaca, NY, 1981).

    Google Scholar 

  2. J. P. Borel, Surf. Sci. 106, 1 (1981), and references therein.

    Article  CAS  Google Scholar 

  3. C. Solliard, Solid State Commun. 51, 947 (1984), and references therein.

    Article  CAS  Google Scholar 

  4. C.J. Rossouw and S.E. Donnelly, Phys. Rev. Lett. 55, 2960 (1985); J.H. Evens and D.J. Mazey, J. Phys. F 15, L1 (1985).

  5. T.L. Beck, J. Jellinek, and R.S. Berry, J. Chem. Phys. 87, 545 (1987); J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91, 4950 (1987); F. Ercolessi, W. Andreoni, and E. Tosatti, Phys. Rev. Lett. 66, 911 (1991); H. P. Cheng and R. S. Berry, Phys. Rev. A 45, 7969 (1992); P.M. Ajayan and L.D. Marks, Phys. Rev. Lett. 60, 595 (1988); S.T. Chui, Phys. Rev. B 46, 4233 (1992); M. Y. Zhou and P. Sheng, Phys. Rev. B 43, 3460 (1991); J.R. Childless, C.L. Chien, M.Y. Zhou, and P. Sheng, Phys. Rev. B 44 11689 (1991); M. Wautelet, J. Phys. D 24, 343 (1991).

  6. G.L. Allen, R.A. Bayless, W.W. Gile, and W.A. Jesser, Thin Solid Films 144, 297 (1986).

    Article  CAS  Google Scholar 

  7. T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Phys. Rev. B 42, 8548 (1990).

    Article  CAS  Google Scholar 

  8. G.L. Allen, W.W. Gile, and W.A. Jesser, Acta Metall. 28, 169 (1980).

    Article  Google Scholar 

  9. J. B. Boyce and M. Stutzmann, Phys. Rev. Lett. 54, 562 (1985).

    Article  CAS  Google Scholar 

  10. V.P. Skripov, V.P. Koverda, and V.N. Skokov, Phys. Status Solidi A 66, 109 (1981).

    Article  CAS  Google Scholar 

  11. A.N. Goldstein, C.M. Echer, and A.P. Alivisatos, Science 256, 1425 (1992).

    Article  CAS  Google Scholar 

  12. K.M. Unruh, B.M. Patterson, and S.I. Shah, J. Mater. Res. 7, 214 (1992).

    Article  CAS  Google Scholar 

  13. Y. Lereah, G. Deutscher, P. Cheyssac, and R. Kofman, Europhys. Lett. 12, 709 (1990); R. Kofman, P. Cheyssac, R. Garrigos, Y. Lereah, and G. Deutscher, Z. Phys. D20, 267 (1991).

  14. H. Saka, Y. Nishikawa, and T. Imura, Philos. Mag. A57, 895 (1988).

    Article  Google Scholar 

  15. D. L. Zhang and B. Cantor, Acta Metall. Mater. 39, 1595 (1991).

    Article  CAS  Google Scholar 

  16. T. Ohashi, K. Kuroda, and H. Saka, Philos. Mag. B65, 1052 (1992).

    Google Scholar 

  17. L. Grábaek, J. Bohr, E. Johnson, A. Johansen, L. S-Kristensen, and H.H. Andersen, Phys. Rev. Lett. 64, 934 (1990); L. Gråbæk, J. Bohr, H. H. Andersen, A. Johansen, E. Johnson, L. S-Kristensen, and I.K. Robinson, Phys. Rev. B 45, 2628 (1992).

  18. K. Hoshino and S. Shimamura, Philos. Mag. A40, 137 (1979); P.R. Couchman and C.L. Ryan, Philos. Mag. A37, 369 (1978).

  19. V. I. Ivlev, Sov. Phys. Solid State 33, 909 (1991).

    Google Scholar 

  20. E. Matsushita and A. Nakanishi, J. Phys. Soc. Jpn. 39, 1415 (1975); E. Matsushita and T. Matsushita, Prog. Theor. Phys. 59, 15 (1978); E. Matsushita and E. Siegel, Scripta Metall. 13, 913 (1979).

  21. V.G. Gryaznov, M.A. Gurskii, L.I. Trusov, and A.A. Aivazov, Sov. Phys. Solid State 24, 297 (1982).

    Google Scholar 

  22. Z-X. Cai, S.D. Mahanti, A. Antonelli, S.N. Khanna, and P. Jena, Phys. Rev. B 46, 7841 (1992); J. Jellinek and I. L. Garzon, Z. Phys. D20, 242 (1991).

  23. J. Friedel, Surf. Sci. 106, 582 (1981).

    Article  Google Scholar 

  24. F. A. Lindemann, Phys. Z. 11, 609 (1910).

    CAS  Google Scholar 

  25. M, Hasegawa, K. Hoshino, and M. Watabe, J. Phys. F.: Metal Phys. 10, 619 (1980); A. Frenkel, E. Shasha, O. Gorodetsky, and A. Voronel, Phys. Rev. B 48, 1283 (1993).

  26. R.F. Wallis, Prog, in Surf. Sci. 4, 233 (1974); B.A. Nesterenko and A. D. Borodkin, Sov. Phys. Solid State 19, 127 (1977).

  27. Ph. Buffat and J. P. Borel, Phys. Rev. A 13, 2287 (1976).

    Article  CAS  Google Scholar 

  28. J. F. Pócza, A. Barna, and P. B. Barna, J. Vac. Sci. Technol. 6, 472 (1969).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, F.G. Size dependent thermal vibrations and melting in nanocrystals. Journal of Materials Research 9, 1307–1313 (1994). https://doi.org/10.1557/JMR.1994.1307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1994.1307

Navigation