Skip to main content
Log in

Stability of single-wall carbon nanotubes under hydrothermal conditions

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The stability of single-wall carbon nanotubes under hydrothermal conditions (100 MPa pressure, from 30 min to 48 h in the temperature range from 200 to 800 °C) has been investigated. The resultant products were characterized by Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. The stability range of single-wall carbon nanotubes (SWCNTs) under hydrothermal conditions suggests that they, similar to fullerenes, can only survive mild and short-term treatment in high-temperature, high-pressure water. SWCNTs gradually transform into multiwall carbon nanotubes (MWCNTs) and polyhedral graphitic nanoparticules. After 48 h at 750 °C only the Raman spectra characteristic of graphitic carbon were observed. Transmission electron microscopy revealed that after 800 °C and 48 h of treatment SWCNTs fully transformed into MWCNTs and polyhedral carbon nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature 318, 162 (1985).

    Article  CAS  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  3. K. Livingston, Science., 268, 1637 (1995).

    Article  Google Scholar 

  4. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rintzler, D.T. Colbert, G. Scuseria, D. Tomanek, J.E. Fischer, and R.E. Smalley, Science 273, 483 (1996).

    Article  CAS  Google Scholar 

  5. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerene and Carbon Nanotubes (Academic Press, New York, 1996).

    Google Scholar 

  6. M.S. Dresselhaus and G. Dresselhaus, Annu. Rev. Mater. Sci. 25, 487 (1995).

    Article  CAS  Google Scholar 

  7. R. Saito, M. Fujita, M.S. Dresselhaus, and G. Dresselhaus, Appl. Phys. Lett., 60, 2204 (1992).

    Article  CAS  Google Scholar 

  8. K. Tanaka, T. Yamabe, and K. Fukui, The Science and Technology of Carbon Nanotubes (Elsevier, Amsterdam, The Netherlands, 1999).

    Google Scholar 

  9. P.M. Ajayan and S. Iijima, Nature 361, 333 (1993).

    Article  CAS  Google Scholar 

  10. A.C. Dillon, K.M. Jones, T.A. Bekkadahl, C.H. Kiang, D.S. Bethune, and M.J. Heben, Nature 386, 377 (1997).

    Article  CAS  Google Scholar 

  11. C. Dekker, Physics Today 52, 22 (1999).

    Article  CAS  Google Scholar 

  12. J. Kong, H.T. Sog, A.M. Cassell, C.F. Quate, and H. Dai, Nature 395, 878 (1998).

    Article  CAS  Google Scholar 

  13. J. Lefebvre, J.F. Lynch, M. Llaguno, M. Radosavljevic, and A.T. Johnson, Appl. Phys. Lett. 75, 3014 (1999).

    Article  CAS  Google Scholar 

  14. H. Takahashi, B. Jeydevan, K. Tohji, I. Matsuoka, A. Kasuya, Y. Nishina, and T. Nirasawa, Proc. Electrochem. Soc. 96–10, 72 (1996).

    Google Scholar 

  15. H. Takahashi, T. Goto, Y. Akiyama, B. Jeyadevan, K. Tohji, and I. Matosuka, Mater. Sci. Eng. A 217/218, 42 (1996).

    Article  Google Scholar 

  16. K. Tohji, T. Goto, H. Takahashi, Y. Shindo, N. Shimizu, B. Jeyadevan, and I. Matsuoka, Nature 383, 679 (1996).

    Article  CAS  Google Scholar 

  17. K. Tohji, H. Takahashi, Y. Shinoda, B. Jeyadevan, I. Matsuoka, Y. Saito, A. Kasuya, S. Ito, and Y. Nishina, J. Phys. Chem. 101(11), 1974 (1997).

    Article  CAS  Google Scholar 

  18. J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shion, T.R. Lee, D.T. Colbert, and R.E. Smalley, Science 280, 1253 (1998).

    Article  CAS  Google Scholar 

  19. W.L. Suchanek, M. Yoshimura, and Y.G. Gogotsi, J. Mater. Res. 14, 322 (1999).

    Article  Google Scholar 

  20. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotube (Imperial College Press, London, United Kingdom, 1998).

    Book  Google Scholar 

  21. M.A. Pimenta, A. Marucci, S.D.M. Brown, M.J. Mathews, A.M. Rao, P.C. Eklund, R.E. Smalley, G. Dresselhus, and M.S. Dresselhaus, J. Mater. Res. 13, 2396 (1998).

    CAS  Google Scholar 

  22. M. Lamy de la Chapell, S. Lefrant, C. Journet, W. Maser, and P. Bernier, Carbon 36, 705 (1998).

    Article  Google Scholar 

  23. A.M. Rao, S. Bandow, E. Richter, and P.C. Eklund, Thin Solid Films 331, 141 (1998).

    Article  CAS  Google Scholar 

  24. M.J. Pelletier, Analytical Applications of Raman Spectroscopy, (Blackwell Science, Oxford, United Kingdom, 1999).

    Google Scholar 

  25. V. Ivanov, A. Fonseca, J.B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, and X.B. Zhang, Carbon 33(12), 1727 (1995).

    Article  CAS  Google Scholar 

  26. Y.G. Gogotsi, J. Libera, and M. Yoshimura, J. Mater. Res. 15,2591 (2000).

    Article  CAS  Google Scholar 

  27. E. Osawa, Fullerene Sci. Technol., 7.N4, 637 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swamy, S.S., Calderon-Moreno, J.M. & Yoshimura, M. Stability of single-wall carbon nanotubes under hydrothermal conditions. Journal of Materials Research 17, 734–737 (2002). https://doi.org/10.1557/JMR.2002.0106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0106

Navigation