Skip to main content
Log in

Near-threshold ultraviolet-laser ablation of Kapton film investigated by x-ray photoelectron spectroscopy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Near-threshold ultraviolet-laser (355 nm) ablation of 125-μm thick Kapton films was investigated in detail using x-ray photoelectron spectroscopy. Different from the irradiation at higher fluences, the contents of the oxygen, amide group, and C–O group on the ablated surface increased with an increase in the pulse number, whereas the carbon contents decreased, although the contents of the nitrogen and the carbonyl group (C = O) decreased slightly. This implied that there was no carbon-rich residue on the ablated surface. Near the ablation threshold, only photolysis of the C–N bond in the imide rings and the diaryl ether group (C–O) took place due to a low surface temperature rise, and the amide structure and many unstable free radical groups were created. Sequentially, the oxidation reaction occurred to stabilize the free radical groups. The decomposition and oxidation mechanism could explain the intriguing changes of the chemical composition and characteristics of the ablated surface. In addition, the content of the C–O group depended on the opposite factors: the thermally induced decomposition of the ether groups and the pyrolysis of the Caryl–C bond. Upon further irradiation, the cumulative heating may induce the breakage of the Caryl–C bond and enhance the oxidation reaction, resulting in an increase of the content of the C–O group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Srinivasan and V. Mayne-Banton, Appl. Phys. Lett. 40, 40 (1982).

    Google Scholar 

  2. E. Andrew, P.E. Dyer, D. Forster, and P.E. Key, Appl. Phys. Lett. 43, 717 (1983).

    Article  CAS  Google Scholar 

  3. A. Beuhler, A. Tungare, and J. Savic, Circuit World 24, 36 (1998).

    Article  Google Scholar 

  4. J.H. Brannon, J.R. Lankard, A.I. Baise, F. Burns, J. Kaufman, J. Appl. Phys. 58, 2036 (1985).

    Article  CAS  Google Scholar 

  5. S.R. Cain, J. Phys. Chem. 97, 7572 (1993).

    Article  CAS  Google Scholar 

  6. G.B. Blanchet, C.R. Fincher, Jr., C.L. Jackson, S.I. Shah, and K.H. Gardner, Science 262, 719 (1993).

    Article  CAS  Google Scholar 

  7. H. Fukumura, K. Hamano, and H. Masuhara, J. Phys. Chem. 97, 12110 (1993).

    Article  CAS  Google Scholar 

  8. X. Wen, D.E. Hare, and D.D. Dlott, Appl. Phys. Lett. 64, 184 (1994).

    Article  CAS  Google Scholar 

  9. B.J. Plamer, T. Keyes, R.H. Clarke, and J.M. Isner, J. Phys. Chem. 93, 7509 (1989).

    Article  Google Scholar 

  10. H.H.G. Jellinek and R. Srinivasan, J. Phys. Chem. 88, 3048 (1984).

    Article  CAS  Google Scholar 

  11. R. Srinivasan, J. Appl. Phys. 72, 1651 (1992).

    Article  CAS  Google Scholar 

  12. R. Srinivasan, Appl. Phys. A 56, 417 (1993).

    Article  Google Scholar 

  13. Winco K.C. Yung, J.S. Liu, H.C. Man, and T.M. Yue, J. Mater. Process. Tech. 101, 306 (2000).

    Article  Google Scholar 

  14. T. Lippert, J. Stebani, J. Ihlemann, O. Nuyken, A. Wokaun, and R. Srinivasan, J. Phys. Chem. 97, 12296 (1993).

    Article  CAS  Google Scholar 

  15. P.E. Dyer, G.A. Oldershaw, and D. Schudel, J. Phys. D: Appl. Phys. 25, 323 (1992).

    Article  Google Scholar 

  16. J.H. Brannon, D. Scholl, and E. Kay, Appl. Phys. A 52, 160 (1991).

    Article  Google Scholar 

  17. K.C. Yung and D.W. Zeng, Surf. Coat. Technol. 145, 186 (2001).

    Article  CAS  Google Scholar 

  18. R. Srinivasan, R.R. Hall, W.D. Loehle, W.D. Wilson, and D.C. Allbee, J. Appl. Phys. 78, 4881 (1995).

    Article  CAS  Google Scholar 

  19. E.E. Ortelli, F. Geiger, T. Lippert, J. Wei, and A. Wokaun, Macromolecules 33, 5090 (2000).

    Article  CAS  Google Scholar 

  20. E.E. Ortelli, F. Geiger, T. Lippert, and A. Wokaun, Appl. Spectrosc. 55, 412 (2001).

    Article  CAS  Google Scholar 

  21. T. Lippert, E. Ortelli, J.C. Panitz, F. Raimondi, J. Wambach, J. Wei, and A. Wokaun, Appl. Phys. A 69, s651 (2000).

    Article  Google Scholar 

  22. B. Schnyder, J. Wambach, Th. Kunz, Ch. Hahn, and R. Kotz, J. Electron. Spectrosc. 105, 113 (1999).

    Article  CAS  Google Scholar 

  23. D.A. Wesner, M. Aden, J. Gottmann, A. Husmann, and E.W. Kreutz, Fresenius J. Anal. Chem. 365, 183 (1999).

    Article  CAS  Google Scholar 

  24. D.W. Zeng, K.C. Yung, and C.S. Xie, Surf. Coat. Technol. 153, 210 (2002).

    Article  CAS  Google Scholar 

  25. K.C. Yung, D.W. Zeng, and T.M. Yue, Appl. Surf. Sci. 173, 193 (2001).

    Article  CAS  Google Scholar 

  26. D.W. Zeng and K.C. Yung, Appl. Surf. Sci. 180, 280 (2001).

    Article  CAS  Google Scholar 

  27. S. Küper, J. Brannon, and K. Brannon, Appl. Phys. A 56, 43 (1993).

    Article  Google Scholar 

  28. B. Luk´yanchuk, N. Bityurin, S. Anisimov, N. Arnold, and D. Bäuerle, Appl. Phys. A 62, 397 (1996).

    Article  Google Scholar 

  29. B. Luk´yanchuk, N. Bityurin, M. Himmelbauer, N. Arnold, and D. Bäuerle, Nucl. Instrum. Methods Phys. Res. B 122, 347 (1997).

    Article  Google Scholar 

  30. M. Himmelbauer, E. Arenholz, D. Bäuerle, K. Schilcher, Appl. Phys. A 63, 337 (1996).

    Article  Google Scholar 

  31. M. Himmelbauer, N. Arnold, N. Bityurin, E. Arenholz, D. Bäuerle, Appl. Phys. A 64, 451 (1996).

    Google Scholar 

  32. D. Bäuerle, M. Himmelbauer, and E. Arenholz, J. Photochem. Photobio. A: Chem. 106, 27 (1997).

    Article  Google Scholar 

  33. M.K. Ghosh and K.L. Mittal, Polyimides: Fundamentals and Applications (Marcel Dekker, New York, 1996), p. 222.

    Google Scholar 

  34. L.J. Matienzo and F.D. Egitto, Polym. Degrad. Stabil. 35, 181 (1992).

    Article  CAS  Google Scholar 

  35. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 database (John Wiley & Sons, New York, 1992), p. 214.

    Google Scholar 

  36. J.T. Wolan and G.B. Hoflund, J. Vac. Sci. Technol. A 17, 662 (1999).

    Article  CAS  Google Scholar 

  37. W.W. Dueley, UV Lasers: Effects and Applications in Materials Science (Cambridge University Press, New York, 1996), p. 150.

    Book  Google Scholar 

  38. T. Takeichi, Y. Eguchi, Y. Kaburagi, Y. Hishiyama, and M. Inagaki, Carbon 37, 569 (1999).

    Article  CAS  Google Scholar 

  39. Y. Hishiyama, A. Yoshida, and M. Inagaki, Carbon 36, 1113 (1998).

    Article  CAS  Google Scholar 

  40. F.C. Burns and S.R. Cain, J. Phys. D: Appl. Phys. 29, 1349 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, D.W., Yung, K.C. & Xie, C.S. Near-threshold ultraviolet-laser ablation of Kapton film investigated by x-ray photoelectron spectroscopy. Journal of Materials Research 18, 53–59 (2003). https://doi.org/10.1557/JMR.2003.0008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0008

Navigation