Skip to main content
Log in

Interface characteristics affecting electrical properties of Y-doped SiC

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Liquid-phase sintered SiC, doped with 3 vol% AlN, Al2OC, Y3Al5O12, revealed a variation in electrical resistivity of more than five orders of magnitude (<102-107 Ω cm) upon slight variations in the sintering process. The materials were characterized using various transmission electron microscopy techniques such as high-resolution transmission electron microscopy (HRTEM), Fresnel fringe imaging, analytical electron microscopy, and electron holography. The main focus of this study was to verify whether there is a correlation between interface structure and electrical resistivity. Scanning electron microscopy (SEM) of polished and plasma-etched surfaces showed interface features similar to those observed in Si3N4 ceramics containing amorphous grain-boundary films. Such films are expected to act as an insulating barrier for electric current. However, in contrast to the SEM results, HRTEM of SiC grain boundaries revealed no intergranular film in any of the SiC materials studied. Elemental analysis (i.e., energy dispersive x-ray and electron energy loss spectroscopy) of these “clean” SiC interfaces showed the segregation of secondary phase elements at grain boundaries. Electron holography and the Fresnel fringe technique were used to determine the change in the mean inner potential across SiC interfaces, which could be associated with the spatial charge distribution of a double Schottky barrier. The height of the potential barrier correlates with the electrical resistivity recorded via impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Persson and U. Lindefelt, J. Appl. Phys. 82, 5496 (1997).

    Article  CAS  Google Scholar 

  2. R.C. Glass, D. Henshall, V.F. Tsvetkov, and C.H. Carter, Jr., Phys. Stat. Sol. B 202, 149 (1997).

    Article  CAS  Google Scholar 

  3. H.M. Hobgood, R.C. Glass, G. Augustine, R.H. Hopkins, J. Jenny, M. Skowronski, W.C. Mitchel, and M. Roth, Appl. Phys. Lett. 66, 1364 (1995).

    Article  CAS  Google Scholar 

  4. J.R. Jenny, M. Skowronski, W.C. Mitchel, H.M. Hobgood, R.C. Glass, G. Augustine, and R.H. Hopkins, J. Appl. Phys. 78, 3839 (1995).

    Article  CAS  Google Scholar 

  5. R.R. Lee and W.C. Wei, Ceram. Eng. Sci. Proc. 11, 1094 (1990).

    Article  CAS  Google Scholar 

  6. H-J. Kleebe, J. Eur. Ceram. Soc. 10, 151 (1992).

    Article  CAS  Google Scholar 

  7. M. Keppeler, H-G. Reichert, J.M. Broadley, G. Thurn, I. Wiedmann, and F. Aldinger, J. Eur. Ceram. Soc. 18, 521 (1998).

    Article  CAS  Google Scholar 

  8. S.G. Lee, Y-W. Kim, and M. Mitomo, J. Am. Ceram. Soc. 84, 1347 (2001).

    Article  CAS  Google Scholar 

  9. G. Rixecker, I. Wiedmann, A. Rosinus, and F. Aldinger, J. Eur. Ceram. Soc. 21, 1013 (2001).

    Article  CAS  Google Scholar 

  10. Y-W. Kim, M. Mitomo, and T. Nishimura, J. Am. Ceram. Soc. 85, 1007 (2002).

    Article  CAS  Google Scholar 

  11. N.P. Padture, J. Am. Ceram. Soc. 77, 519 (1994).

    Article  CAS  Google Scholar 

  12. J.J. Cao, W.J. Moberly Chan, L.C. De Jonghe, C.J. Gilbert, and R.O. Ritchie, J. Am. Ceram. Soc. 79, 461 (1996).

    Article  CAS  Google Scholar 

  13. M. Omori and H. Takei, J. Am. Ceram. Soc. 65, C92 (1982).

    Article  CAS  Google Scholar 

  14. M. Omori and H. Takei, U.S. Patent No. 4 502 983 (1985).

  15. M. Omori and H. Takei, U.S. Patent No. 4 564 490 (1986).

  16. L.S. Sigl and H-J. Kleebe, J. Am. Ceram. Soc. 76, 773 (1993).

    Article  CAS  Google Scholar 

  17. R.A Cutler and T.B. Jackson, in Ceramic Materials and Components for Engines, Proceedings of the Third International Symposium, edited by V.J Tennery (American Ceramic Society, Westerville, OH, 1989), pp. 309–318.

  18. W.D.G. Böcker and R.J. Hamminger, in Pulvermetallurgie in Wissenschaft und Praxis, Vol. 6, edited by H. Kolaska (Verlag Schmid GmbH, Freiburg i. Br., FRG, 1990), pp. 291–317.

  19. M.A. Mulla and V.D. Krstic, Am. Ceram. Bull. 70, 439 (1991).

    CAS  Google Scholar 

  20. K. Negita, J. Am. Ceram. Soc. 69, C-308 (1986).

    Article  Google Scholar 

  21. M.A. Mulla and V.D. Krstic, Acta Metall. Mater. 42, 303 (1994).

    Article  CAS  Google Scholar 

  22. N.P. Padture and B.R. Lawn, J. Am. Ceram. Soc. 77, 2518 (1994).

    Article  CAS  Google Scholar 

  23. J.L. Huang, A.C. Hurford, R.A. Cutler, and A.V. Virkar, J. Mater. Sci. 21, 1448 (1986).

    Article  CAS  Google Scholar 

  24. T. Grande, H. Sommerset, E. Hagen, K. Wiik, and M-A. Einarsrud, J. Am. Ceram. Soc. 80, 1047 (1997).

    Article  CAS  Google Scholar 

  25. E.J. Winn and W.J. Clegg, J. Am. Ceram. Soc. 82, 3466 (1999).

    Article  CAS  Google Scholar 

  26. V.V. Pujar, R.P. Jensen, and N.P. Padture, J. Mater. Sci. Lett. 19, 1011 (2000).

    Article  CAS  Google Scholar 

  27. H-W. Jun, H-W. Lee, G-H. Kim, H. Song, and B-H. Kim, Ceram. Eng. Sci. Proc. 18, 487 (1997).

    Article  CAS  Google Scholar 

  28. R.E. Loehman, J. Am. Ceram. Soc. 62, 491 (1979).

    Article  CAS  Google Scholar 

  29. S. Sakka, J. Non-Cryst. Solids 181, 215 (1995).

    Article  CAS  Google Scholar 

  30. G. Pezzotti, H. Nishimura, K. Ota, and H-J. Kleebe, J. Am. Ceram. Soc. 84, 2371 (2001).

    Article  CAS  Google Scholar 

  31. P.O. Robert, J. Fouletier, and L. Menneron, J. Eur. Ceram. Soc. 19, 875 (1999).

    Article  CAS  Google Scholar 

  32. J.R. MacDonald, Solid State Ionics 13, 147 (1984).

    Article  CAS  Google Scholar 

  33. R.L. Hurt and J.R. MacDonald, Solid State Ionics 20, 111 (1986).

    Article  Google Scholar 

  34. D.R. Clarke, J. Am. Ceram. Soc. 70, 15 (1987).

    Article  CAS  Google Scholar 

  35. H-J. Kleebe, J. Eur. Ceram. Soc. 10, 151 (1992).

    Article  CAS  Google Scholar 

  36. W.J. Moberlychan and L.C. De Jonghe, Acta. Met. 46, 2471 (1998).

    Article  CAS  Google Scholar 

  37. S. Turan and K.M. Knowles, Mater. Sci. Forum 294–296, 313 (1999).

    Google Scholar 

  38. R.W. Carpenter, W. Braue, and R.A. Cutler, J. Mater. Res. 6, 1937 (1991).

    Article  CAS  Google Scholar 

  39. M. Bartsch, U. Messerschmidt, F. Appel, and P. Werner, in Electron Microscopy in Plasticity and Fracture Research of Materials, edited by U. Messerschmidt, F. Appel, J. Heydenreich, and V. Schmidt (Academic-Verlag, Berlin, Germany, 1989), pp. 239–244.

  40. D.R. Clarke, Ultramicroscopy 4, 33 (1979).

    Article  CAS  Google Scholar 

  41. O.L. Krivanek, T.M. Shaw, and G. Thomas, J. Appl. Phys. 50, 4223 (1979).

    Article  CAS  Google Scholar 

  42. M.K. Cinibulk, H-J. Kleebe, and M. Rühle, J. Am. Ceram. Soc. 76, 426 (1993).

    Article  CAS  Google Scholar 

  43. J.N. Ness, W.M. Stobbs, and T.F. Page, Phil. Mag. A 54, 679 (1986).

    Article  CAS  Google Scholar 

  44. D.R. Clarke, Ultramicroscopy 4, 33 (1979).

    Article  CAS  Google Scholar 

  45. Q. Jin, D.S. Wilkinson, and G.C. Weatherly, J. Am. Ceram. Soc. 18, 2281 (1998).

    Article  CAS  Google Scholar 

  46. F.M. Ross and W.M. Stobbs, Phil. Mag. 63, 37 (1991).

    Article  Google Scholar 

  47. D. Gabor, Proc. Phys. Soc. A 197, 454 (1949).

    Google Scholar 

  48. G. Möllenstedt and H. Düker, Zeitschrift für Physik 145, 377 (1956).

    Article  Google Scholar 

  49. H. Lichte, “Bildebenen-Off-Axis Elektronenholographie atomarer Strukturen,” Habilitationsschrift Universität Tübingen (University of Tübingen, Tübingen, Germany, 1987).

  50. T. Troffer, M. Schadt, T. Frank, H. Ith, G. Pensl, J. Heindl, H.P. Strunk, and M. Maier, Phys. Stat. Sol. A 162, 277 (1997).

    Article  CAS  Google Scholar 

  51. M. Gajdardziska-Josifovska and A.H. Carim, in Introduction to Electron Holography, edited by E. Völkl, L.F. Allard, and D.C. Joy (Kluwer Academic, New York, 1999), pp. 267–293.

  52. V. Ravikumar, R.P. Rodrigues, and V.P. Dravid, Phys. Rev. Lett. 75, 4063 (1995).

    Article  CAS  Google Scholar 

  53. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).

    Article  CAS  Google Scholar 

  54. G. Pike, Semiconducting Polycrystalline Ceramics, in Material Science and Technology (VCH Verlagsgesellschaft, Weinheim, Germany, 1994), pp. 731–753

  55. D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999).

    Article  CAS  Google Scholar 

  56. V. Ravikumar, R.P. Rodrigues, and V.P. Dravid, J. Am. Ceram. Soc. 80, 1131 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegelin, F., Kleebe, HJ. & Sigl, L.S. Interface characteristics affecting electrical properties of Y-doped SiC. Journal of Materials Research 18, 2608–2617 (2003). https://doi.org/10.1557/JMR.2003.0365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0365

Navigation