Skip to main content
Log in

Poly(methyl methacrylate)-nanoribbon nanocomposites with high thermal stability and improvement in the glass-transition temperature

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel poly(methyl methacrylate) (PMMA) nanocomposite containing dispersed inorganic nanoribbons [ZnO–0.15Zn(CH3COO)2−0.85H2O] was prepared by free radical polymerization of methyl methacrylate in the acetone solution. Experimental results showed that inorganic nanoribbons were uniformly distributed in and bonded to the PMMA host matrix without macroscopic organic–inorganic phase separation. It was found that the thermal stability and glass-transition temperature of the nanocomposite films increased effectively with increasing inorganic content at low content and remained above 1 wt% inorganic content. These results suggest the network formation because of the strong interaction between the inorganic nanoribbons and the polymer matrix, which induces the mobility restriction of polymer chains. The characteristics of the one-dimensional inorganic nanoribbons we used here may play a key role in the formation of the “cross-link” networks and in the decision to lower the content of the inorganic nanoribbon additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
TABLE I
FIG. 4
FIG. 5
TABLE II
FIG. 6
TABLE III

Similar content being viewed by others

References

  1. R. Chapman and P. Mulvaney: Electro-optical shifts in silver nanoparticle films. Chem. Phys. Lett. 349, 358 (2001).

    Article  CAS  Google Scholar 

  2. O. Wilson, G.J. Wilson, and P. Mulvaney: Laser writing in polarized silver nanorod films. Adv. Mater. 14, 1000 (2002).

    Article  CAS  Google Scholar 

  3. P.J. Yoon, T.D. Fornes, and D.R. Paul: Thermal expansion behavior of nylon 6 nanocomposites. Polymer 43, 6727 (2002).

    Article  CAS  Google Scholar 

  4. T. Kashiwagi, F. Du, J.F. Douglas, K. Winey, R.H. Harris, Jr., and J.R. Shields: Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928 (2005).

    Article  CAS  Google Scholar 

  5. Y.F. Lu, Y. Yang, and A. Sellinger: Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites. Nature 410, 913 (2001).

    Article  CAS  Google Scholar 

  6. Y.C. Chen, N.R. Raravikar, L.S. Schadler, P.M. Ajayan, Y.P. Zao, T.M. Lu, G.C. Wang, and X.C. Zhang: Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. Appl. Phys. Lett. 81, 975 (2002).

    Article  CAS  Google Scholar 

  7. E. Kymakis and G.A.J. Amartunga: Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112 (2002).

    Article  CAS  Google Scholar 

  8. B. Philip, J.K. Abraham, A. Chandrasekhar, and V.K. Varadan: Carbon nanotube/PMMA composite thin films for gas-sensing applications. Mater. Struct. 12, 935 (2003).

    Article  CAS  Google Scholar 

  9. K. Rege, N.R. Raravikar, D.Y. Kim, L.S. Schadler, P.M. Ajayan, and J.S. Dordick: Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films. Nano Lett. 3, 829 (2003).

    Article  CAS  Google Scholar 

  10. M. Kobayashi, Y. Rharbi, L. Brauge, L. Cao, and M.A. Winnik: Effect of silica as fillers on polymer interdiffusion in poly(butyl methacrylate) latex films. Macromolecules 35, 7387 (2002).

    Article  CAS  Google Scholar 

  11. A. Karim, K. Yurkeli, C. Meredith, E. Amis, and R. Krishnamoorti: Combinatorial methods for polymer materials science: Phase behavior of nanocomposite blend films. Polym. Eng. Sci. 42, 1836 (2002).

    Article  CAS  Google Scholar 

  12. M. Alexandre and P. Dubois: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng., R 28, 1 (2000).

    Article  Google Scholar 

  13. Z.H. Liu, X.J. Yang, Y. Makita, and K. Ooi: Synthesis of a new layered manganese oxide nanocomposite through a delamination/reassembling process. Chem. Lett. (Jpn.) 7, 680 (2002).

    Article  Google Scholar 

  14. J. Heising and M.G. Kanatzidis: Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638 (1999).

    Article  CAS  Google Scholar 

  15. N. Sukpirom and M.M. Lerner: Preparation of organic-inorganic nanocomposites with a layered titanate. Chem. Mater. 13, 2179 (2001).

    Article  CAS  Google Scholar 

  16. T. Nakato, Y. Furumi, N. Terao, and T. Okuhara: Reaction of layered vanadium phosphorus oxides, VOHPO4·0.5H2O and VOHPO4·0.5H2O, with amines and formation of exfoliative intercalation compounds. J. Mater. Chem. 10, 737 (2000).

    Article  CAS  Google Scholar 

  17. F. Leroux, M. Adachi-Pagano, and M. Intissar: S. Chauvière, C. Forano, and J.P. Bess: Delamination and restacking of layered double hydroxides. J. Mater. Chem. 11, 105 (2001).

    Article  CAS  Google Scholar 

  18. J.W. Gilman: Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31 (1999).

    Article  CAS  Google Scholar 

  19. N.R. Raravikar, L.S. Schadler, A. Vijayaraghavan, Y.P. Zhao, B.Q. Wei, and P.M. Ajayan: Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films. Chem. Mater. 17, 974 (2005).

    Article  CAS  Google Scholar 

  20. A. Laachachi, M. Cochez, M. Ferriol, E. Leroy, J.M. Lopez-Cuesta, and N. Oget: Influence of Sb2O3 particles as filler on the thermal stability and flammability properties of poly(methyl methacrylate) (PMMA). Polym. Degrad. Stab. 85, 641 (2004).

    Article  CAS  Google Scholar 

  21. Z. Cao, W. Xie, J.M. Hwu, L. Wells, and W.P.J. Pan: The Characterization of organic modified montmorillonite and its filled PMMA nanocomposite. Thermal Anal. Calorim. 64, 467 (2001).

    Article  Google Scholar 

  22. A. Soldera and N. Metatla: Glass transition phenomena observed in stereoregular PMMAs using molecular modeling. Compos. Part A: Appl. Sci. Manuf. 36, 521 (2005).

    Article  Google Scholar 

  23. Z. Gui, J. Liu, Z.Z. Wang, L. Song, Y. Hu, W.C. Fan, and D.Y. Chen: From muticomponent precursor to nanoparticle nanoribbons of ZnO. J. Phys. Chem. B 109, 1113 (2005).

    Article  CAS  Google Scholar 

  24. M. Avella, M.E. Errico, S. Martelli, and E. Martuscelli: Preparation methodologies of polymer matrix nanocomposites. Appl. Organomet. Chem. 15, 435 (2001).

    Article  CAS  Google Scholar 

  25. M. Avella, M.E. Errico, and E. Martuscelli: Novel PMMA/CaCO3 nanocomposites abrasion resistant prepared by an in situ polymerization process. Nano Lett. 1, 213 (2001).

    Article  CAS  Google Scholar 

  26. L. Tammaro, M. Tortora, V. Vittoria, U. Costantino, and F. Marmottini: Methods of preparation of novel composites of poly(∈-caprolactone) and a modified Mg/Al hydrotalcite. J. Polym. Sci., Part A: Polym. Chem. 43, 2281 (2005).

    Article  CAS  Google Scholar 

  27. A.R. Manninen, H.E. Naguib, A.V. Nawaby, and M. Day: CO2 Sorption and diffusion in polymethyl methacrylate–clay nanocomposites. Polym. Eng. Sci. 45, 904 (2005).

    Article  CAS  Google Scholar 

  28. H.T. Wang, P. Xu, W. Zhong, L. Shen, and Q.G. Du: Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polym. Degrad. Stab. 87, 319 (2005).

    Article  CAS  Google Scholar 

  29. A. Laachachi, M. Cochez, M. Ferriol, J.M. Lopez-Cuesta, and E. Leroy: Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Mater. Lett. 59, 36 (2005).

    Article  CAS  Google Scholar 

  30. J. Yang, C. Xue, S.H. Yu, J.H. Zeng, and Y.T. Qian: General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller. Angew. Chem., Int. Ed. Engl. 41, 4697 (2002).

    Article  CAS  Google Scholar 

  31. X.H. Yuan, Z.L. Peng, Y. Zhang, and Y.X. Zhang: In situ preparation of zinc salts of unsaturated carboxylic acids to reinforce NBR. J. Appl. Polym. Sci. 12, 2740 (2000).

    Article  Google Scholar 

  32. Y. Ishigaki, K. Takahashi, and H. Fukuda: Stereochemistry of the free-radical polymerization of zinc methacrylates coordinated with a bidentate ligand. Macromol. Rapid Commun. 15, 1024 (2000).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Foundation of China (No. 20571070) and the special foundation of State Key Laboratory of Fire Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Gui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Gui, Z., Zhu, J. et al. Poly(methyl methacrylate)-nanoribbon nanocomposites with high thermal stability and improvement in the glass-transition temperature. Journal of Materials Research 22, 3316–3323 (2007). https://doi.org/10.1557/JMR.2007.0427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0427

Navigation