Skip to main content
Log in

Polymorphism in the negative thermal expansion material magnesium hafnium tungstate

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnesium hafnium tungstate [MgHf(WO4)3] was synthesized by high-energy ball milling followed by calcination. The material was characterized by variable- temperature neutron and x-ray diffraction. It crystallized in space group P21/a below 400 K and transformed to an orthorhombic structure at higher temperatures. The orthorhombic polymorph adopted space group Pnma, instead of the Pnca structure commonly observed for other A2(MO4)3 materials (A = trivalent metal, M = Mo, W). In contrast, the monoclinic polymorphs appeared to be isostructural. Negative thermal expansion was observed in the orthorhombic phase with αa = −5.2 × 10−6 K−1, αb = 4.4 × 10−6 K−1, αc = −2.9 × 10−6 K−1, αV = −3.7 × 10−6 K−1, and αl = −1.2 × 10−6 K−1. The monoclinic to orthorhombic phase transition was accompanied by a smooth change in unit-cell volume, indicative of a second-order phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
TABLE I.
FIG. 2
FIG. 3

Similar content being viewed by others

References

  1. V. Korthuis, N. Khosrovani, A.W. Sleight, N. Roberts, R. Dupree W.W. Warren: Negative thermal-expansion and phase-transitions in the ZrV2−xPxO7 series. Chem. Mater. 7, 412 1995

    Article  CAS  Google Scholar 

  2. T.A. Mary, J.S.O. Evans, T. Vogt A.W. Sleight: Negative thermal expansion from 0.3 to 1050 kelvin in ZrW2O8. Science 272, 90 1996

    Article  CAS  Google Scholar 

  3. A.W. Sleight: Negative thermal expansion materials. Curr. Opin. Solid State Mater. Sci. 3, 128 1998

    Article  CAS  Google Scholar 

  4. A.W. Sleight: Isotropic negative thermal expansion. Annu. Rev. Mater. Sci. 28, 29 1998

    Article  CAS  Google Scholar 

  5. G. Ernst, C. Broholm, G.R. Kowach A.P. Ramirez: Phonon density of states and negative thermal expansion in ZrW2O8. Nature 396, 147 1998

    Article  CAS  Google Scholar 

  6. J.S.O. Evans: Negative thermal expansion materials. J. Chem. Soc., Dalton Trans. 3317 1999

    Google Scholar 

  7. T.A. Mary A.W. Sleight: Bulk thermal expansion for tungstate and molybdates of the type A2M3O12. J. Mater. Res. 14, 912 1999

    Article  CAS  Google Scholar 

  8. R. Mittal, S.L. Chaplot, H. Schober T.A. Mary: Origin of negative thermal expansion in cubic ZrW2O8 revealed by high pressure inelastic neutron scattering. Phys. Rev. Lett. 86, 4692 2001

    Article  CAS  Google Scholar 

  9. P.M. Forster A.W. Sleight: Negative thermal expansion in Y2W3O12. Int. J. Inorg. Mater. 1, 123 1999

    Article  CAS  Google Scholar 

  10. P.M. Forster, A. Yokochi A.W. Sleight: Enhanced negative thermal expansion in Lu2W3O12. J. Solid State Chem. 140, 157 1998

    Article  CAS  Google Scholar 

  11. J.S.O. Evans, T.A. Mary A.W. Sleight: Negative thermal expansion in a large molybdate and tungstate family. J. Solid State Chem. 133, 580 1997

    Article  CAS  Google Scholar 

  12. T. Suzuki O. Atsushi: Negative thermal expansion in (HfMg)(WO4)3. J. Amer. Ceram. Soc. 87, 1365 2004

    Article  CAS  Google Scholar 

  13. J. Rodriguez-Carvajal: Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B: Condens. Matter 192, 55 1993

    Article  CAS  Google Scholar 

  14. W.M. Yim R.J. Paff: Thermal expansion of AlN, sapphire, and silicon. J. Appl. Phys. 45, 1456 1974

    Article  CAS  Google Scholar 

  15. R. Shirley: The Crysfire 2002 System for Automatic Powder Indexing: User’s Manual The Lattice Press Guildford 2002

    Google Scholar 

  16. J.W. Visser: A fully automatic program for finding the unit cell from powder data. J. Appl. Crystallogr. 2, 89 1969

    Article  CAS  Google Scholar 

  17. A. Boultif D. Louër: Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Crystallogr. 24, 987 1991

    Article  CAS  Google Scholar 

  18. P-E. Werner, L. Eriksson M. Westdahl: TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. J. Appl. Crystallogr. 18, 367 1985

    Article  CAS  Google Scholar 

  19. D. Taupin: A powder-diagram automatic-indexing routine. J. Appl. Crystallogr. 6, 380 1973

    Article  CAS  Google Scholar 

  20. F. Kohlbeck E.M. Hörl: Indexing program for powder patterns especially suitable for triclinic, monoclinic and orthorhombic lattices. J. Appl. Crystallogr. 9, 28 1976

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Science Foundation under Grant DMR-0545517. We acknowledge the support of the National Institute of Standards and Technology, United States Department of Commerce, in providing the neutron research facilities used in this work. The authors would like to thank J. Stalick and J. Leao for their help with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cora Lind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gindhart, A.M., Lind, C. & Green, M. Polymorphism in the negative thermal expansion material magnesium hafnium tungstate. Journal of Materials Research 23, 210–213 (2008). https://doi.org/10.1557/JMR.2008.0013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0013

Navigation