Skip to main content
Log in

Fabrication of hybrid composites based on biomineralization of phosphorylated poly(ethylene glycol) hydrogels

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel route to organic-inorganic composites was described based on biomineralization of poly(ethylene glycol) (PEG)-based hydrogels. The 3-dimensional hydrogels were synthesized by radical crosslinking polymerization of poly(ethylene glycol fumarate) (PEGF) in the presence of ethylene glycol methacrylate phosphate (EGMP) as an apatite-nuclating monomer, acrylamide (AAm) as a composition-modulating comonomer, and potassium persulfate (PPS) as a radical initiator. We used the urea-mediated solution precipitation technique for biomineralization of hydrogels. The apatite grown on the surface and interior of the hydrogel was similar to biological apatites in the composition and crystalline structure. Powder x-ray diffraction (XRD) showed that the calcium phosphate crystalline platelets on hydrogels are preferentially aligned along the crystallographic c-axis direction. Inductively-coupled plasma mass spectroscopy (ICP-MS) analysis showed that the Ca/P molar ratio of apatites grown on the hydrogel template was found to be 1.60, which is identical to that of natural bones. In vitro cell experiments showed that the cell adhesion/proliferation on the mineralized hydrogel was more pronounced than on the pure polymer hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. S. Mann, D.D. Archibald, J.M. Didymus, T. Douglas, B.R. Heywood, F.C. Meldrum, N.J. Reeves: Crystallization at inorganic-organic interfaces: Biominerals and biomimetic synthesis. Science 261, 1286 1993

    Article  CAS  Google Scholar 

  2. P. Calvert and P. Rieke: Biomimetic mineralization in and on polymers. Chem. Mater. 8, 1715 1996

    Article  CAS  Google Scholar 

  3. H.T. Schmidt and A.E. Ostafin: Liposome directed growth of calcium phosphate nanoshells. Adv. Mater. 14, 532 2002

    Article  CAS  Google Scholar 

  4. H.T. Schmidt, B.L. Gray, P.A. Wingert, A.E. Ostafin: Assembly of aqueous-cored calcium phosphate nanoparticles for drug delivery. Chem. Mater. 16, 4942 2004

    Article  CAS  Google Scholar 

  5. K.K. Perkin, J.L. Turner, K.L. Wooley, S. Mann: Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages. Nano Lett. 5, 1457 2005

    Article  CAS  Google Scholar 

  6. A. Sugawara, S. Yamane, K. Akiyoshi: Nanogel-templated mineralization: Polymer-calcium phosphate hybrid nanomaterials. Macromol. Rapid Commun. 27, 441 2006

    Article  CAS  Google Scholar 

  7. J.D. Hartgerink, E. Beniash, S.I. Stupp: Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684 2001

    Article  CAS  Google Scholar 

  8. W. Zhang, S.S. Liao, F.Z. Cui: Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem. Mater. 15, 3221 2003

    Article  CAS  Google Scholar 

  9. J-H. Bradt, M. Mertig, A. Teresiak, W. Pompe: Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem. Mater. 11, 2694 1999

    Article  CAS  Google Scholar 

  10. J. Song, E. Saiz, C.R. Bertozzi: A new approach to mineralization of biocompatible hydrogel scaffolds: An efficient process toward 3-dimensional bonelike composites. J. Am. Chem. Soc. 125, 1236 2003

    Article  CAS  Google Scholar 

  11. S.A. Hutchens, R.S. Benson, B.R. Evans, H.M. O'Neill, C.J. Rawn: Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27, 4661 2006

    Article  CAS  Google Scholar 

  12. J. Song, V. Malathong, C.R. Bertozzi: Mineralization of synthetic polymer scaffolds: A bottom-up approach for the development of artificial bone. J. Am. Chem. Soc. 127, 3366 2005

    Article  CAS  Google Scholar 

  13. G.K. Hunter and H.A. Goldberg: Modulation of crystal formation by bone phosphoproteins: Role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem. J. 302, 175 1994

    Article  CAS  Google Scholar 

  14. S. Weiner and L. Addadi: Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689 1997

    Article  CAS  Google Scholar 

  15. T. Saito, A.L. Arsenault, M. Yamauchi, Y. Kuboki, M.A. Crenshaw: Mineral induction by immobilized phosphoproteins. Bone 21, 305 1997

    Article  CAS  Google Scholar 

  16. A. George, L. Bannon, B. Sabsay, J.W. Dillon, J. Malone, A. Veis, N.A. Jenkins, D.J. Gilbert, N.G. Copeland: The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process. J. Biol. Chem. 271, 32869 1996

    Article  CAS  Google Scholar 

  17. W.L. Murphy and D.J. Mooney: Bioinspired growth of crystalline carbonate apatite on biodegradable polymer substrata. J. Am. Chem. Soc. 124, 1910 2002

    Article  CAS  Google Scholar 

  18. A. Oyane, M. Uchida, C. Choong, J. Triffitt, J. Jones, A. Ito: Simple surface modification of poly(-caprolactone) for apatite deposition from simulated body fluid. Biomaterials 26, 2407 2005

    Article  CAS  Google Scholar 

  19. S. He, M.J. Yasemski, A.W. Yasko, P.S. Engel, A.G. Mikos: Injectable biodegradable polymer composites based on poly(propylene fumarate) crosslinked with poly(ethylene glycol)-dimethacrylate. Biomaterials 21, 2389 2000

    Article  CAS  Google Scholar 

  20. R.J.M.J. Vogels, J.T. Kloprogge, J.W. Geus: Homogeneous forced hydrolysis of aluminum through the thermal decomposition of urea. J. Colloid Interface Sci. 285, 86 2005

    Article  CAS  Google Scholar 

  21. G.K. Toworfe, R.J. Composto, I.M. Shapiro, P. Ducheyne: Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 27, 631 2006

    Article  CAS  Google Scholar 

  22. S.A. Hutchens, R.S. Benson, B.R. Evans, H.M. O'Neill, C.J. Rawn: Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27, 4661 2006

    Article  CAS  Google Scholar 

  23. T.J. Webster, R.W. Siegel, R. Bizios: Osteoblast adhesion on nanophase ceramics. Biomaterials 20, 1221 1999

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant (Code No. 08K1501-01110) from the Center for Nanostructured Materials Technology under the 21st Century Frontier R&D Programs and a grant (R15-2006-022-01001-0) from the National Core Research Center Program of the Ministry of Education, Science and Technology, Korea, and a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Cheon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.W., Kim, S.E., Kim, Y.W. et al. Fabrication of hybrid composites based on biomineralization of phosphorylated poly(ethylene glycol) hydrogels. Journal of Materials Research 24, 50–57 (2009). https://doi.org/10.1557/JMR.2009.0002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2009.0002

Navigation