Skip to main content
Log in

Core-Shell Nanorods for Efficient Photoelectrochemical Hydrogen Production

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We propose core-shell InP-CdS and InP-ZnTe nanorods as photoelectrodes in the efficient photoelectrochemical hydrogen production. Based on our systematic study using strain-dependent k.p theory, we find that in these heterostructures both energies and wave-function distributions of electrons and holes can be favorably tailored to a considerable extent by exploiting the interplay between quantum confinement and strain. Consequently, these core-shell nanorods with proper dimensions (height, core radius, and shell thickness) can simultaneously satisfy all criteria for effective photoelectrodes in solar-based hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Bard and M. A. Fox, Acc. Chem. Res. 28, 141 (1995).

    Article  CAS  Google Scholar 

  2. See, for example, A. Hagfeldt and M. Grätzel, Chem. Rev. 95, 49 (1995).

    Article  CAS  Google Scholar 

  3. A. Bansal, O. Khaselev, and J. A. Turner, Proceedings of the 2000 U.S. DOE Hydrogen Program Review, NREL/CP-570–28890.

  4. K. Varner, S. Warren, and J. A. Turner, Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610–32405.

  5. H. A. Finklea, Semiconductor Electrodes (Elsevier, Amsterdam, 1998).

    Google Scholar 

  6. O. Khaselev, J. A. Turner, J. Electrochem. Soc. 316, 57 (1991).

    Google Scholar 

  7. S. S. Kocha, J. A. Turner, A. J. Nozik, Electroanal. Chem. 27, 367 (1994).

    Google Scholar 

  8. S. S. Kocha, J. A. Turner, J. Electrochem. Soc. 142, 2625 (1995).

    Article  CAS  Google Scholar 

  9. N. Chandrasekharan and P. V. Kamat, J. Phys. Chem. 104, 10851 (2000).

    Article  CAS  Google Scholar 

  10. H. Kato, K. Asakura, and A. Kudo, J. Am. Chem. Soc. 125, 3082 (2003).

    Article  CAS  Google Scholar 

  11. L. P. Balet, S. A. Ivanov, A. Piryatinski, M. Achermann, and V. I. Klimov, Nano Lett. 4, 1485 (2004).

    Article  CAS  Google Scholar 

  12. E. P. Pokatilov, V. A. Fonoberov, V. M. Fomin, and J. T. Devreese, Phys. Rev. B 64, 245329 (2001).

    Article  Google Scholar 

  13. J. Li and L. W. Wang, Appl. Phys. Lett. 84, 3648 (2004).

    Article  CAS  Google Scholar 

  14. D. W. Lucey, D. J. MacRae, M. Furis, Y. Sahoo, A. N. Cartwright, and P. N. Prasad, Chem. Materials, 17, 3754 (2005), and REFERENCES therein.

    Article  CAS  Google Scholar 

  15. F. S. Manciu, R.E. Tallman, B.D. McCombe, B.A. Weinstein, D.W. Lucey, Y. Sahoo, and P.N. Prasad, Physica E 26, 14 (2004).

    Article  Google Scholar 

  16. C. Pryor, Phys. Rev. B 57, 7190 (1998).

    Article  CAS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Theory of Elaticity (Pergamon, London, 1959).

    Google Scholar 

  18. T. B. Bahder, Phys. Rev. B 41, 11992 (1990).

    Article  CAS  Google Scholar 

  19. Z. G. Yu, C. E. Pryor, W. H. Lau, M. A. Berding, and D. B. MacQueen, J. Phys. Chem. B 109, 22913 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z.G., Pryor, C.E., Lau, W.H. et al. Core-Shell Nanorods for Efficient Photoelectrochemical Hydrogen Production. MRS Online Proceedings Library 885, 1103 (2005). https://doi.org/10.1557/PROC-0885-A11-03

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0885-A11-03

Navigation