Skip to main content
Log in

Self-Assembly of Semiconductor Quantum Dots by Droplet Epitaxy

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have proposed a novel self-assembling growth method, termed Droplet Epitaxy, for the direct formation of QDs without using any lithography in 1990. Compared with the island formation based on the Stranski-Krastanow growth mode, the Droplet Epitaxy is applicable to the formation of quantum dots not only in lattice-mismatched but also in lattice-matched systems such as GaAs/AlGaAs. The process of the Droplet Epitaxy in MBE chamber consists of forming numerous III-column element droplets such as Ga or InGa with homogeneous size of around 10 nm on the substrate surface first by supplying their molecular beams, and then reacting the droplets with As molecular beam to produce GaAs or InGaAs epitaxial microcrystals.

Another advantage of the Droplet Epitaxy is the possibility of the fabrication of QDs structures without wetting layer by cotrolling the stoichiometry of the substrate surface just before the deposition of III-column element droplets.

Also we can control the shape of the QDs structure self-organizingly such as pyramidal shape, single-ring shape and concentric double-ring shape. These ring structures will provide excellent possibilities for the investigation of quantum topological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Schaffer, M. D. Lind, S. P. Kowalczyk and W. Grant, J. Vac. Sci. & Technol. B1, 688 (1983).

    Article  Google Scholar 

  2. B. F. Lewis, F. J. Grunthaner, A. Madhukar, R. Fernandez and J. Maserjian, J. Vac. Sci. & Technol. B2, 419 (1984).

    Article  Google Scholar 

  3. R. A. A. Kubiak, E. H. C. Parker and S. Newstead, Appl. Phys. A 35, 61 (1984).

    Article  Google Scholar 

  4. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse and G. Le Roux, Appl. Phys. Lett. 47, 1099 (1985).

    Article  CAS  Google Scholar 

  5. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaas and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).

    Article  CAS  Google Scholar 

  6. N. Koguchi, S. Takahashi and T. Chikyow, Proceed. 6th Int. Conf. MBE, La Jolla, 1990, J. Crystal Growth 111, 688 (1991).

    Article  CAS  Google Scholar 

  7. J. Osaka, N. Inoue, Y. Mada, K. Yamada and K. Wada, J. Crystal Growth 99, 120 (1990).

    Article  CAS  Google Scholar 

  8. T. Isu, M. Hata and A. Watanabe, J. Crystal Growth 111, 210 (1991).

    Article  CAS  Google Scholar 

  9. T. Chikyow and N. Koguchi, Jpn. J. Appl. Phys. 29, L2093 (1990).

  10. N. Koguchi and K. Ishige, Jpn. J. Appl. Phys. 32, 2052 (1993).

    Article  CAS  Google Scholar 

  11. N. Koguchi, K. Ishige and S. Takahashi, J. Vac. Sci. & Technol. B11, 787 (1993).

    Article  Google Scholar 

  12. T. Chikyow and N. Koguchi, Appl. Phys. Lett. 61, 2431 (1992).

    Article  CAS  Google Scholar 

  13. K. Watanabe, N. Koguchi and Y. Gotoh, Jpn. J. Appl. Phys. 39, L79 (2000).

  14. C. Deparis and J. Massies, J. Crystal Growth 108, 157 (1991) .

  15. A. Ohtake and N. Koguchi, Appl. Phys. Lett. 83, 5193 (2003)

    Article  CAS  Google Scholar 

  16. A. Ohtake, P.Kocan, K.Seino, W. G. Schmidt and N.Koguchi, Phys. Rev. Lett. 93, 266101 (2004).

    Article  Google Scholar 

  17. S.Sanguinetti, K.Watanabe, T.Tateno, M.Gurioli, P.Werner M.Wakaki and N.Koguchi, J. Crystal Growth 253, 71 (2003).

    Article  CAS  Google Scholar 

  18. L. Daweritz and R. Hey, Surf. Sci. 236, 15 (1990).

    Article  Google Scholar 

  19. C.D.Lee, C.Park, H.J.Lee, K.S.Lee, S.J.Park, C.G.Park, S.K.Noh and N.Koguchi, Jpn. J.Appl.Phys, 37, 7158 (1998).

    Article  CAS  Google Scholar 

  20. T.Mano and N.Koguchi, J.Crystal Growth 278, 108 (2005).

    Article  CAS  Google Scholar 

  21. T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai T. Tateno, J. S. Kim, T. Noda, M. Kawabe,K. Sakoda, G. Kido and N. Koguchi, Nano Letters 5, 3, 425–428 (2005)

  22. T.Kuroda, T.Mano, T.Ochiai, S.Sanguinetti, K.Sakoda, G.Kido and N.Koguchi, Phys.Rev. B72, 205301 (2005).

    Article  Google Scholar 

  23. Z.M.Wang, K.Holms, J.L.Shults and G.J.Salamo, Physca Status Solidi, (a) 202, R85 (2005).

  24. M.Yamagiwa, T.Mano, T.Kuroda, T.Tateno, K.Sakoda, G.Kido and N.Koguchi, Appl. Phys. Lett, 89, 113115 (2006).

    Article  Google Scholar 

  25. T. Mano, K. Watanabe, S. Tsukamoto, H. Fujioka, M. Oshima and N. Koguchi, Jpn. J. Appl. Phys. 38, L1009 (1999).

  26. J.S.Kim and N.Koguchi, Appl.Phys. Lett, 85, 5893 (2004).

    Article  CAS  Google Scholar 

  27. T.Mano, T.Kuroda, M.Yamagiwa, G.Kido, K.Sakoda and N.Koguchi, Appl. Phys. Lett, 89, 183102 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koguchi, N. Self-Assembly of Semiconductor Quantum Dots by Droplet Epitaxy. MRS Online Proceedings Library 959, 1801 (2006). https://doi.org/10.1557/PROC-0959-M18-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0959-M18-01

Navigation