Skip to main content
Log in

Electron Tomography of SPM Probes, Nanoparticles and Precipitates

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanoscale tomographic reconstructions from objects with diameters of 100nm or smaller can only be achieved non-destructively with transmission electron tomography. The application of this technique to W tips, which are common probes for scanning tunneling microscopy and nanoindentation, is demonstrated with emphasis on visualizing oxide layers and functionally attached nanoparticles. For the reconstruction of facetted free-standing catalyst nanoparticles, such as CeO2 octahedra, we propose a combination of energy-filtered (EF) and bright field (BF) TEM tomography to achieve high fidelity of the projection relationship via EFTEM, due to its incoherent imaging mode, and high resolution definition of the particle circumference from the BF tomogram. Finally, electron tomography applications to CeO2 nanoprecipitates embedded in a multicomponent oxide glass matrix are shown, which comprises the first tomographic 3D reconstruction of a nanoscale dendrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frank J (Ed.) Electron Tomography: Three-dimensional Imaging with the Transmission Electron Microscope, (Plenum Press, New York, London, 1992).

  2. D. De Rosier and A. Klug, Nature 217, 130 (1968).

    Article  Google Scholar 

  3. W. Baumeister, R. Grimm, and J. Walz, Cell Biol 9, 81 (1999).

    CAS  Google Scholar 

  4. A.J. Koster, et al., J. Phys. Chem. B 104, 9368 (2000).

    Article  CAS  Google Scholar 

  5. G. Möbus and B.J. Inkson, Appl. Phy. Lett. 79, 1369 (2001); G. Möbus and B.J. Inkson, Ultramicroscopy 96, 433 (2003).

    Article  Google Scholar 

  6. P.A. Midgley and M. Weyland, Ultramicroscopy 96, 413 (2003).

    Article  CAS  Google Scholar 

  7. H. Friedrich, M.R. McCartney, and P.R. Buseck, Ultramicroscopy 106, 18 (2005).

  8. A. Cerezo, T.J. Godfrey, M. Huang, G.D.W. Smith, Rev. Sci. Instrum. 71, 3016 (2000).

    Article  CAS  Google Scholar 

  9. T.J. Steer et al., Thin solid films 413, 147 (2002).

    Article  CAS  Google Scholar 

  10. G. Yang, G. Möbus, and R.J. Hand, Phys. Chem. Glass 47 (2006).

  11. G. Yang, G. Möbus, and R.J. Hand, Micron 37, 433 (2006).

    Article  CAS  Google Scholar 

  12. J.R. Kremer, D.N. Mastronarde, and J.R. McIntosh, J. Struct. Biol. 116, 71 (1996).

    Article  CAS  Google Scholar 

  13. IDL, Interactive Data Language, ITT systems, Boulder, CO, USA.

  14. X. Xu, Z. Saghi, Y. Peng, R. Gay, B.J. Inkson, G. Möbus, Microsc. and Microanal., 12(Supp 2), 648–649 (2006).

  15. G. Yang et al., Symposium NN, this conference (2006).

  16. T Haxhimali et al., Nature Materials 5, 660 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Saghi, Z., Yang, G. et al. Electron Tomography of SPM Probes, Nanoparticles and Precipitates. MRS Online Proceedings Library 982, 204 (2006). https://doi.org/10.1557/PROC-0982-KK02-04

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0982-KK02-04

Navigation