Skip to main content
Log in

Hydrostatic Pressure Studies of GaN/AlGaN/GaN Heterostructure Devices with Varying AlGaN Thickness and Composition

  • Published:
MRS Online Proceedings Library Aims and scope

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

GaN-based heterostructure devices are of interest for pressure and stress sensing applications due to their potential for use at high temperatures and in caustic environments. We have grown n-GaN/u-AlGaN/n-GaN heterostructure devices on sapphire substrates by organometallic vapor phase epitaxy (OMVPE) using the epitaxial layer overgrowth (ELO) method. The devices were fabricated with varying AlGaN layer thickness and composition. Current-voltage (I-V) characteristics were obtained to characterize the performance of these devices under hydrostatic pressures up to 500 MPa. For a fixed bias, the current was observed to decrease in magnitude with increasing hydrostatic pressure for all devices tested. The current modulation is attributed to piezoelectric effects. Specifically, the polarization charge densities at both GaN/AlGaN interfaces are sensitive to changes in the hydrostatic pressure, and these charges affect the shape of the potential barrier and the current. Changes in the AlGaN layer thickness and composition modify the interfacial polarization, with thicker AlGaN layers and higher Al content increasing the effect of pressure on the observed I-V characteristics. The decreases in current magnitude with increasing pressure are linear over the pressure range tested. In order to quantify the performance of these devices, we calculate a pressure gauge factor based on a normalized change in current divided by the change in pressure. Values obtained range from 0.1–1.0 GPa−1, consistent with our previously published results for a single device. In addition, the turn-on voltages under both forward and reverse bias conditions are observed to increase with increasing AlGaN layer thickness and composition, a result that agrees with our device model. These turn-on voltages are governed by different mechanisms in the forward and reverse bias directions. Under forward bias, the mechanism is a transition from a thermionic to a tunneling process. However, under reverse bias, the turn-on occurs when the total electric field changes sign in the AlGaN layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Morkoç, Nitride Semiconductors and Devices, 2nd ed., (Springer-Verlag, New York, in press).

  2. Wide Energy Bandgap Electronic Devices, edited by F. Ren and J. C. Zolper (World Scientific, Singapore, 2003).

  3. O. Ambacher, J. Phys. D 31, 2653 (1998).

    Article  CAS  Google Scholar 

  4. Y. Liu, M. Z. Kauser, M. I. Nathan, P. P. Ruden, A. M. Dabiran, B. Hertog, and P. P. Chow, Appl. Phys. Lett. 81, 3398 (2002).

    Article  CAS  Google Scholar 

  5. Y. Liu, M. Z. Kauser, M. I. Nathan, P. P. Ruden, S. Dogan, H. Morkoç, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 84, 2112 (2004).

    Article  CAS  Google Scholar 

  6. Y. Liu, M. Z. Kauser, P. P. Ruden, Z. Hassan, Y. C. Lee, S. S. Ng, and F. K. Yam, Appl. Phys. Lett. 88, 022109 (2006).

    Article  Google Scholar 

  7. Y. Liu, P. P. Ruden, J. Xie, H. Morkoç, and K.-A. Son, Appl. Phys. Lett. 88, 013505 (2006).

    Article  Google Scholar 

  8. B. S. Kang, S. Kim, F. Ren, J. W. Johnson, R. J. Therrien, P. Rajagopal, J. C. Roberts, E. L. Piner, K. J. Linthicum, S. N.G. Chu, K. Baik, B. P. Gila, C. R. Abernathy, and S. J. Pearton, Appl. Phys. Lett. 85, 2962 (2004).

  9. S. N.G. Chu, F. Ren, S. J. Pearton, B. S. Kang, S. Kim, B. P. Gila, C. R. Abernathy, J.-I. Chyi, W. J. Johnson, and J. Lin, Mater. Sci. Eng. A 409, 340 (2005).

    Article  Google Scholar 

  10. Y. Liu, M.Z. Kauser, D.D. Schroepfer, P.P. Ruden, J. Xie, Y.T. Moon, N. Onojima, H. Morkoc, K.-A. Son, and M.I. Nathan, J. Appl. Phys. 99, 113706 (2006).

    Article  Google Scholar 

  11. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierkowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, J. Appl. Phys. 87, 334 (2000).

    Article  CAS  Google Scholar 

  12. X. Ni, J. Xie, Y. Fu, H. Morkoç, I. P. Steinke, Y. Liu, P. P. Ruden, K.-A. Son, and B. Yang, Paper OA in proceedings of SPIE - The International Society for Optical Engineering, v 6473, Gallium Nitride Materials and Devices II, 2007, p xi–xii ISSN#0277-786X, ISBN# 9780819465863.

  13. R. E. Hankey, D. E. Schuele, J. Acoustical Soc. Amer. 48, 190 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinke, I., Kauser, M.Z., Ruden, P.P. et al. Hydrostatic Pressure Studies of GaN/AlGaN/GaN Heterostructure Devices with Varying AlGaN Thickness and Composition. MRS Online Proceedings Library 994, 09941119 (2006). https://doi.org/10.1557/PROC-0994-F11-19

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0994-F11-19

Navigation