Skip to main content
Log in

High-Temperature Fiber Matrix Composites for Reduction of Radiation Heat Transfer

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Recent progress in fabrication technology allows for the efficient control of electromagnetic waves by means of photonic devices. This could be attractive and promising also for high-temperature photonic structures to control electromagnetic heat transfer at temperatures above 1000 oC. We discuss the literature and present our own results on Fiber Matrix Composites (FMC), which could be superior to high-temperature metals or monolithic ceramics and can be designed for photonic applications. Possible applications include the protection of non-rotating components in high-temperature engines and turbines such as combustors and liners, coatings and parts for aerospace vehicles. Our discussion includes the material aspect and some relevant structure features. The use of woven fabrics to design new photonic band gap structures is discussed. An example of the use of the plane-wave expansion method for FMC design is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Lourtioz, H. Benisty, V. Beger, J.-M. Gerard, D. Maystre, A. Tchelnokov, “Photonic Crystals. Towards Nanoscale Photonic Devices”, (Springer, 2008).

  2. V. Shklover, L. Bragisnky, G. Witz, M. Mishrikey, Ch. Hafner, J. Comput. Theoret. Nanoscience 5, 862 (2008).

    Article  CAS  Google Scholar 

  3. M. J. Kelly, D. E. Wolfe, J. Singh, J. Eldridge, D.-M. Zhu, R. Miller, Appl. Cer. Technol. 3, 81 (2006).

    Article  CAS  Google Scholar 

  4. S. Y. Lin, J. Moreno, J. G. Fleming, Appl. Phys. Lett. 83, 380 (2003).

    Article  CAS  Google Scholar 

  5. H. S. Sözüer, J. P. Dowling, J. Mod. Phys. 41, 231 (1994).

    Google Scholar 

  6. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, Sol. St. Com. 89, 413 (1994).

    Article  CAS  Google Scholar 

  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, “Photonic Crystals. Molding the Flow of Light”, (Princeton University Press, 2008), pp. 100–102.

  8. Y.-C. Tsai, K. W.-K. Shung, J. B. Pendry, J. Phys.: Condens. Matter. 10, 753 (1998).

    CAS  Google Scholar 

  9. Y.-C. Tsai, J. B. Pendry, K. W.-K. Shung, Phys. Rev. B 59, R10401 (1999).

    Article  CAS  Google Scholar 

  10. V. Shklover, Chem. Mater. 17, 608 (2005).

    Article  CAS  Google Scholar 

  11. K. A. Keller, G. Jefferson, R. J. Kerans, “Oxide-oxide Composites,” Handbook of Ceramic Composites”, ed. N. P. Bansal (Kluwer Academic Publishers, 2005) pp. 377–421.

  12. T. Gries, J. Stüve, T. Grundmann, “Textile Reinforcement Structures”, Ceramic Matrix Composites, ed. W. Krenkel (Wiley-VCH, 2008), pp. 21–47.

  13. L. Braginsky, V. Shklover, Phys. Rev. B 73, 085107 (2006).

    Article  Google Scholar 

  14. J. C. Maxwell Garnett, Philos. Trans. R. Soc. London Ser. B 203, 385 (1904).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shklover, V., Braginsky, L., Mishrikey, M. et al. High-Temperature Fiber Matrix Composites for Reduction of Radiation Heat Transfer. MRS Online Proceedings Library 1162, 305 (2009). https://doi.org/10.1557/PROC-1162-J03-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1162-J03-05

Navigation