Skip to main content
Log in

High Optical Absorption of Indium Sulfide Nanorod Arrays Formed by Glancing Angle Deposition

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Indium (III) sulfide has recently attracted much attention due to its potential in optical sensors as a photoconducting material and in photovoltaic applications as a wide direct bandgap material. On the other hand, optical absorption properties are key parameters in developing highly photosensitive photodetectors and high efficiency solar cells. We show that indium sulfide nanorod arrays produced by glancing angle deposition techniques have superior absorption and low reflectance properties compared to conventional flat thin film counterparts. We observed an optical absorption value of approximately 96% for nanorods, in contrast to 80% for conventional amorphous-to-polycrystalline thin films of indium sulfide. A photoconductivity response was also observed in the nanorod samples, whereas no measurable photoresponse was detected in conventional thin films. We give a preliminary description of the enhanced light absorption properties of the nanorods by using Shirley-George Model that predicts enhanced diffuse scattering and reduced reflection of light due the rough morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, W-T; Lee, W-S; Chung, C-S, Kim, C-D, Journal of Applied Physics, 1988, 63, 5472–5475

    Article  CAS  Google Scholar 

  2. Kuveshni G., Smyth-Boyle D., O’brien P., Mat. Res. Soc. Symp. Proc. 2002, 692, H8.14

    Google Scholar 

  3. Mathew M, Sudha Kartha C., Vijayakumar K. P., Advances in Energy Res. (AER-2006) 217–221

  4. Amlouk M., Ben Said M. A., Kamoun N., Belgacem S., Brunet N., Jpn. J. Appl. Phys.,Part 1 1999, 38, 26–30

    Article  CAS  Google Scholar 

  5. O’Brien P., Octway D. J., Walsh J. R., Thin Solid Films 1998, 315, 57–61.

    Article  Google Scholar 

  6. Ranjith R., John T T, Sudha Kartha C., Vijayakumar K.P., Abe T., Kashiwaba Y., Materials Research Bulletin, 2005, 40, 6, 15 1018–1023

    Article  Google Scholar 

  7. Yoosuf R., Jayaraj M.K., Solar Energy Materials & Solar Cells, 2005, 89, 85–94

    Article  CAS  Google Scholar 

  8. Rehwald W., Harbeke G., J. Phys. Chem Solids,1965, 26, 1309–1318

    Article  CAS  Google Scholar 

  9. Diehl R., Nitsche R., J. Crystal Growth, 1975, 28, 306–310.

    Article  CAS  Google Scholar 

  10. Allsop N.A,. Schönmann A., Belaidi A., Muffler H.J,. Mertesacker B., Bohne W., Strub E., Röhrich J., Lux-Steiner M.C,. Fischer, Ch.-H., Thin Solid Films 2006, 513, 52–56

    Article  CAS  Google Scholar 

  11. Barreau N., Mokrani A., Couzinié-Devy F., Kessler J., Thins Solid Films,2009,517, 2316–2319

    Article  CAS  Google Scholar 

  12. Timoumi A., Bouzouita H., Brini R., Kanzari M. Rezig B.. “Optimization of annealing conditions of In2S3 thin films deposited by vacuum thermal evaporation” Applied Surface Science 2006, 253 306–310

    Article  CAS  Google Scholar 

  13. Bouabid K. , Ihlal A. , Outzourhit A., Ameziane E. L., Active and Passive Elec Components, 2004 27, 207–214

    Article  Google Scholar 

  14. John T T, Sudha Kartha C., Vijayakumar K.P., Abe T., Kashiwaba Y., Applied Surface Sci 2005, 252, 1360–1367

    Article  CAS  Google Scholar 

  15. Ratheesh Kumar M., John T T, Sudha Kartha C., Vijayakumar K.P., Abe T. Kashiwaba Y., J. of Mat. Science,2006, 41, 5519–5525

    Article  Google Scholar 

  16. Barreau N., Marsillac S., Bernède J. C., Barreau A., Applied Surface Science 2000, 161, 20–26

    Article  CAS  Google Scholar 

  17. Naghavi N., Spiering S., Powalla M., Cavana B. Lincot D.,Prog. Photo.v Res. Appl. 2003, 11, 437–443.

    Article  CAS  Google Scholar 

  18. Hariskos D., Ruckh M., Rühle U., Walter T., Schock H. , Sol. Ener Matr. Sol. Cell 1996, 41/42 ,345–353

    Article  CAS  Google Scholar 

  19. Nakada T and M. Mizutani, Jpn J Appl. Phys, 2002, 41 165.

    Article  Google Scholar 

  20. Barreau N.,Bernède J. El Maliki H.,Marsillac S., Castel X. Pinel J., Solid State Comm 2002, 122 445–450

    Article  CAS  Google Scholar 

  21. Xi.-Q.,Schubert M. F.,Kim J. K.,Schubert E. F.,Chen M., Lin S-Y., Liu W. Nature Phot.; 2007, 1,3, 176–179.

    Article  CAS  Google Scholar 

  22. Xi J.-Q., Kim J. K., Schubert E. F., Ye D., Lu T.-M., Lin S.-Y, Juneja J. S., Opt. Lett. 2006, 31, 601–603.

    Article  CAS  Google Scholar 

  23. Kivaishi R. T., Thin solid Films , 1982, 97, 153–163

    Article  Google Scholar 

  24. Tyagi P. j., Vedeshwar A. G., Bull. Mater. Sci. 2001, 24, 297.

    Article  CAS  Google Scholar 

  25. Shirley L. G. , George N., Appl. Opt. 1988, 27, 1850–1861

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cansizoglu, M.F., Engelken, R., Seo, H.W. et al. High Optical Absorption of Indium Sulfide Nanorod Arrays Formed by Glancing Angle Deposition. MRS Online Proceedings Library 1165, 827 (2009). https://doi.org/10.1557/PROC-1165-M08-27

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1165-M08-27

Navigation