Skip to main content
Log in

Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The unique one-dimensional electronic and optical properties attributed to single-walled carbon nanotubes (SWCNTs) are mainly related to the peculiar local arrangement of sp2 hybridised carbon atoms. This structural configuration gives raise to interesting features, which can be identified with various spectroscopic techniques. In the case of SWCNTs, high energy spectroscopy methods represent effective key tools to analyse the modifications of the underlying basic correlation effects in the bonding environment, the charge transfer between functionalized nanotubes, and on-wall doping. More specifically, in this article we review the shape of the C1s photoemission (PES) response related to the density of states (DOS) of the valence band (VB) in SWCNTs and its changes upon on-wall functionalization and metallicity-sorting. In the last, the progress in the identification of changes in the site selective valence-band electronic structure is clarified in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical Properties of Carbon Nanotubes (1998) Imperial College Press, London.

    Book  Google Scholar 

  2. N. Hamada, S. Sawada, and A. Oshiyama, Phys Rev Lett. 68,1579 (1992).

    Article  CAS  Google Scholar 

  3. P. Ayala, R. Arenal, A. Loiseau, A. Rubio, T. Pichler, Rev Mod Phy, 2010 (In Press)

  4. T. Pichler, New Diam. Front. Carbon Technol, 11, 375 (2001).

    CAS  Google Scholar 

  5. Y. Miyata, K. Yanagi, Y. Maniwa, and H. Kataura, J Phys Chem C 112, 13187 (2008).

    Article  CAS  Google Scholar 

  6. A. Scholl, Y. Zou, T. Schmidt, R. Fink, and E. Umbach, J Electron Spec Rel Phenom, 129, 1 (2003).

    Article  CAS  Google Scholar 

  7. C. Kramberger, H. Rauf, H. Shiozawa, M. Knupfer, B. Buchner, T. Pichler, D. Batchelor, and H. Kataura, Phys Rev B, 75, 235437 (2007).

    Article  Google Scholar 

  8. H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, et al., Nature, 426, 540 (2003).

    Article  CAS  Google Scholar 

  9. H. Rauf, T. Pichler, M. Knupfer, J. Fink, and H. Kataura, Phys Rev Lett, 93, 096805 (2004).

    Article  CAS  Google Scholar 

  10. P. Ayala, Y. Miyata, K. De Blauwe, H. Shiozawa, Y. Feng, K. Yanagi, C. Kramberger, S.R.P. Silva, R. Follath, H. Kataura, and T. Pichler, Phys Rev B, 80, 205427 (2009)

    Article  Google Scholar 

  11. S. Doniach and M. Sunjic, Jour Phys C, 3, 285 (1970).

    Article  CAS  Google Scholar 

  12. K.C. Prince, I. Ulrych, M. Peloi, B. Ressel, V. Chab, C. Crotti, and C. Comicioli, Phys Rev B, 62, 6866 (2000).

    Article  CAS  Google Scholar 

  13. S. Suzuki, C. Bower, T. Kiyokura, K. G. Nath, Y. Watanabe, and O. Zhou, J Elect Spectr Relat Phenom, 114, 225 (2001).

    Article  Google Scholar 

  14. A. Goldoni, C. Cepek, R. Larciprete, L. Sangaletti, S. Pagliara, G. Paolucci, and M. Sancrotti, Phys Rev Lett, 88, 196102 (2002).

    Article  CAS  Google Scholar 

  15. P. Ayala, R. Arenal, M.H. Rümmeli, A. Rubio, T. Pichler, Carbon, 48, 575 (2010).

    Article  CAS  Google Scholar 

  16. S. Kim, J. Lee, C. Na, J. Park, K. Seo, and B. Kim, Chem Phys Lett, 413, 300 (2005).

    Article  CAS  Google Scholar 

  17. P. Ayala, A. Grüneis, T. Gemming, D. Grimm, C. Kramberger, M.H. Rümmeli, F.L. Freire Jr., H. Kuzmany, R. Pfeiffer, A. Barreiro, B. Büchner, and T. Pichler, Jour Phys Chem C, 101, 2879 (2007)

    Article  Google Scholar 

  18. P. Ayala, F.L. Freire Jr., M.H. Rümmeli, A. Grüneis, T. Pichler, Phys Stat Sol B, 244, 4051 (2007)

    Article  CAS  Google Scholar 

  19. A.L. Elias, P. Ayala., A. Zamudio, M. Grobosch, E. Cruz-Silva, J.M. Romo-Herrera, J. Campos, H. Terrones, T. Pichler, M. Terrones, Jour Nanosc Nanotech, 6, 1 (2010)

    Google Scholar 

  20. P. Gai, , O. Stephan, K. McGuire, A. Rao, M. Dresselhaus,G. Dresselhaus, and C. Colliex, Jour Mat Chem, 14, 669 (2004).

    Article  CAS  Google Scholar 

  21. P. Ayala, W. Plank, A. Grüneis, E. Kauppinen, M. Rümmeli, H. Kuzmany, and T. Pichler, Jour Mat Chem, 18, 5676 (2008)

    Article  CAS  Google Scholar 

  22. S. Daothong, J. Parjanne, E. I. Kauppinen, M. Valkeapaa, T. Pichler, P. Singjai and P. Ayala, Phys Stat Sol B, 246, 2518 (2009)

    Article  CAS  Google Scholar 

  23. T. Shirasaki, A. Derré, M. Ménétrier, A. Tressaud, and S. Flandrois, Carbon, 38, 1461 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayala, P., Kramberger, C., Miyata, Y. et al. Substitutionally-Functionalized vs Metallicity-Selected Single-Walled Carbon Nanotubes: A High Energy Spectroscopy Viewpoint. MRS Online Proceedings Library 1204, 405 (2009). https://doi.org/10.1557/PROC-1204-K04-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1204-K04-05

Navigation