Skip to main content
Log in

The Role of Mechanical Tension in Neurons

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We used high resolution micromechanical force sensors to study the in vivo mechanical response of embryonic Drosophila neurons. Our experiments show that Drosophila axons have a rest tension of a few nN and respond to mechanical forces in a manner characteristic of viscoelastic solids. In response to fast externally applied stretch they show a linear force-deformation response and when the applied stretch is held constant the force in the axons relaxes to a steady state value over time. More importantly, when the tension in the axons is suddenly reduced by releasing the external force the neurons actively restore the tension, sometimes close to their resting value. Along with the recent findings of Siechen et al (Proc. Natl. Acad. Sci. USA 106, 12611 (2009)) showing a link between mechanical tension and synaptic plasticity, our observation of active tension regulation in neurons suggest an important role for mechanical forces in the functioning of neurons in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Pelham Jr. and Y. Wang, Proc Natl. Acad.Sci USA 94, 13661 (1997 ).

    Article  CAS  Google Scholar 

  2. T. Yeung, P. C. Georges L. A. Flanagan B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey, Cell Motility and C ility Cytoytoskeleton 60, 24 (2005).

  3. J. Zheng, P. Lamoureux, V. Santiago, T. Dennerll, R. E. Buxbaum, and S. R. Heidemann, J. Neurosci. 11, 1117 (1991).

    Article  CAS  Google Scholar 

  4. S. Chada, P. Lamoureux, R. E. Buxbaum and S. R. Heidemann, J. Cell Sci. 110 1179 (1997).

    CAS  Google Scholar 

  5. D. Bray . Axonal growth in response to experimentally applied mechanical tension. Dev. Bio. 102 379 (1984).

    Article  CAS  Google Scholar 

  6. T. J. Dennerll P. Lamoureux, R. E E. Buxbaum, and S. R. Heidemann J. Cell Bio. 109, 3073 (1989).

    Article  CAS  Google Scholar 

  7. S. Anava, A. Greenbaum, E. B. Jacob Y. Hanein, and A. Ayali, Biophys. J. 96, 1661 (2009).

    Article  CAS  Google Scholar 

  8. S. Siechen, S. Yang, A. Chiba, and T. Saif Proc. Natl. Acad. Sci. USA 106, 1, 2611 (2009).

    Google Scholar 

  9. J. Rajagopalan, A. Tofangchi and M. T. A. Saif Proc. IEEE 23rd Intl Conf. on MEMS MEMS, pp. 88–91, doi 10.1109/MEMSYS.2010.5442558 (2010).

  10. E.R. Kandel, J. H. Schwartz, T. M. Jessell, in Principles of Neural Science (McGraw Hill, New York, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, J., Tofangchi, A. & Saif, M.T.A. The Role of Mechanical Tension in Neurons. MRS Online Proceedings Library 1274, 106 (2010). https://doi.org/10.1557/PROC-1274-QQ01-06

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1274-QQ01-06

Navigation