Skip to main content
Log in

Analyzing the Mesoscopic Structure of Pericellular Coats on Living Cells

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We employed passive particle-tracking microrheology to map the micromechanical structure of the hyaluronan-rich pericellular coat enveloping chondrocytes. Therefor we exploited the technique’s position sensitivity to gain radial information on the coat. We observed a linear increase in viscoelasticity from the coat’s rim towards the cell membrane. This gradient corresponds to hyaluronan concentration profiles observed in confocal fluorescent microscopy with small, specific hyaluronan markers. These results suggest that the structural basis of the pericellular coat is formed by grafted hyaluronan of different effective lengths stretched out by a homogenous decoration with hyaladherins such as aggrecan. The different effective lengths could be caused either by different lengths of the HA chains or by “side-on” attachments within the chain. Remarkably, the hyaluronan-rich coat increases the viscosity of the pericellular space only by about a factor of about two at 100 and at 20 Hz compared to pure media and an increasing elastic component is observed. Both the viscoelasticity as well as the hyaluronan concentration decrease linearly or slightly exponential from the cell membrane towards the PCC’s rim. These observations could be obtained on living cells exploiting this unintrusive measurement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S P Evanko, M Tammi, R H Tammi, T N Wight, Adv Drug Deliv Rev 59, 1351–1365 (2007).

    Article  CAS  Google Scholar 

  2. B P Toole, Nat Rev Cancer 4 (7), 528–539 (2004).

    Article  CAS  Google Scholar 

  3. M Tammi, A J Day, E A Turley, J B Biol Chem 277 (7), 4581–4584 (2002).

    Article  CAS  Google Scholar 

  4. N Itano et al., J Biol Chem 274 (35), 25085–25092 (1999).

    Article  CAS  Google Scholar 

  5. A J Day, G D Prestwich, J Biol Chem 277 (7), 4585–4588 (2002).

    Article  CAS  Google Scholar 

  6. C B Knudson, J Biol Chem 120 (3), 825–834 (1993).

    CAS  Google Scholar 

  7. M Hellmann Hellmann, M Weiss, D W Heermann Heermann, Phys Rev hys E 76, 021802 (2007).

    Article  Google Scholar 

  8. M Cohen, D Joester, I Sabanay, L Addadi, B Geiger, Soft Matter 3, 327–332 (2007).

    Article  CAS  Google Scholar 

  9. B P Toole, Sem Cell Dev Bio 12 (2), 79–87 (2001).

    Article  CAS  Google Scholar 

  10. P M Freeman, R N Natarajan, J H Kimura, T P Andriacchi, J Orthop Res, 12 (3), 311–320 (1994).

    Article  Google Scholar 

  11. M Knight, S Ghori, D Lee, D L Bader Bader, Med Eng Phys, 20, 684–688 (1998).

    Article  CAS  Google Scholar 

  12. W R Trickey, F P T Baaijens, T A Laursen, L G Alexopoulos, F Guilak Guilak, J Biomech 39 (1), 78–87 (2006).

    Article  Google Scholar 

  13. L G Alexopoulos, G M Williams, M L Upton, L A Setton, F Guilak Guilak, J Biomech 38 (3), 509–517 (2005).

    Article  Google Scholar 

  14. D L Bader, T Ohashi, M Knight, D A Lee, M Sato, Biorheology 39 (1-2), 69–78 (2002).

    CAS  Google Scholar 

  15. L Ng, H-H Hung, A Sprunt, S Chubinskaya, C Ortiz, A Grodzinsky J Biomech 40 (5), 1011–1023 (2007).

    Article  Google Scholar 

  16. I Sokolov, S Iyer, V Subba-Rao, R M Gaikwad, C D Woodworth, Appl Phys Lett, 91, 023902 (2007).

    Article  Google Scholar 

  17. Boehm, T A Mundinger, C H J Boehm, V Hagel, U Rauch, J P Spatz, J E Curtis, Soft Matter 5 (21), 4331–4337 (2009).

    Article  CAS  Google Scholar 

  18. M Cohen, Z Kam, L Addadi, B Geiger, EMBO J 25 (2), 302–311 (2006).

    Article  CAS  Google Scholar 

  19. M Cohen, E Klein, B Geiger, L Addadi, Biophys J 85 (3), 1996–2005 (2003).

    Article  CAS  Google Scholar 

  20. M. Gardel, M. Valentine and D. Weitz, Microscale Diagnostic Techniques, Springer, Heidelberg, 2005, Microrheology chapter.

    Google Scholar 

  21. T A Waigh, Rep Prog Phys 68, 685–742 (2005).

    Article  Google Scholar 

  22. H Zhang, S L Baader, M Sixt, J Kappler, Rauch U g, J Histochem Cytochem 52 (7), 915–922 (2004).

    Article  CAS  Google Scholar 

  23. H Boehm, PhD Thesis Thesis, University Heidelberg, (2008)

  24. Weigel und DeAngelis J Biol Chem 282 (51)36777–36781 (2007).

    Article  CAS  Google Scholar 

  25. DeAngelis, CMLS 56 (7), 670–682 (1999).

    Article  CAS  Google Scholar 

  26. A Kultti, K Rill Rilla, R Tiihonen, A P Spicer, R H Tammi, M Tammi, J Biol Chem 281 (23), 15821–15828 (2006).

    Article  CAS  Google Scholar 

  27. R Richter, K Hock, J Burkhartsmeyer, H Boehm, P Bingen, G Wang, N F Steinmetz, D J Evans, J P Spatz, J Am Chem Soc 129, 5306–5307 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehm, H., Mundinger, T.A., Hagel, V. et al. Analyzing the Mesoscopic Structure of Pericellular Coats on Living Cells. MRS Online Proceedings Library 1274, 203 (2010). https://doi.org/10.1557/PROC-1274-QQ02-03

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1274-QQ02-03

Navigation