Skip to main content
Log in

On the Mechanism of Ultra Thin Silicon Oxide Film Growth During Thermal Oxidation

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The growth of ultra-thin oxide films by the thermal oxidation of silicon has been studied by low and medium energy ion scattering spectroscopies (LEIS and MEIS) and X-ray photoelectron spectroscopy (XPS). To help elucidate the diffusional and mechanistic aspects of oxide growth we have used sequential isotope oxidation (18O2 followed by 16O2). LEIS demonstrates that both 18O and 16O atoms are on the silicon surface under our growth conditions. MEIS also distinguishes 18O from 16O and gives a depth distribution for both with high accuracy. Our results show that several key aspects of the Deal-Grove model (oxygen diffusion to the Si-SiO2 interface and oxide formation at the interface) are consistent with our results for 50Å films. For very thin oxide films (15Å or less), we found a mixed isotopic distribution in the film, demonstrating more complex oxidation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bait. The Si-SiO2 System (North-Holland, Amsterdam, 1988).

    Google Scholar 

  2. T. Engel, Surf. Sci. Rept. 18, 91 (1993).

    Article  CAS  Google Scholar 

  3. E. Irene, CRC Crit. Rev. Sol. St. Mat. Sci. 14, 175 (1988).

    Article  CAS  Google Scholar 

  4. G. Lucovsky, J. F. Fitch, E. Kobeda, and E. Irene, in The Physics and Chemistry of SiO2 and the Si-SiO2 interface (eds. C.R. Helms and D.E. Deal) p. 139 (Plenum Press, NY, 1988).

  5. N. F. Mott, S. Rigo, F. Rochet, and A. M. Stoneham, Phil. Mag. B 60, 189 (1989).

    Article  CAS  Google Scholar 

  6. B. E. Deal and A. S. Grove, J. Appl. Phys. 36, 3770 (1965).

    Article  CAS  Google Scholar 

  7. According to some recent results this deviation may be caused by the limited accuracy of ellipsometry for thin silica films (T. Dutta and N.M. Ravindra, Phys. Stat. Sol. A134, 447, 1992; S.C. Kao, and R.H. Doremus, in The Physics and Chemistry of SiÖ2 and Si-SiO2 Interface, C.R. Helms and B.E. Deal, eds., Plenum Press, N.Y., 1993, p.23).

    Article  Google Scholar 

  8. M. A. Hoppers, R. A. Clarke, and L. Young, J. Electrochem. Soc. 122, 1216 (1975).

    Article  Google Scholar 

  9. C. J. Han and C. R. Helms, J. Electrochem. Soc. 135, 1824 (1988).

    Article  CAS  Google Scholar 

  10. J. M. Delarious, G R. Helms, D. B. Kao, and B. E. Deal, Appl. Surf. Sci. 39, 89 (1989).

    Article  Google Scholar 

  11. A. G. Revesz and H. L. Hughes, J. Non-Cr. Solids 71, 87 (1985).

    Article  CAS  Google Scholar 

  12. E. A. Irene, J. Appl. Phys. 54, 5416 (1983).

    Article  CAS  Google Scholar 

  13. S. Kamohara and Y. Kamigaki, J. Appl. Phys. 69, 7871 (1991).

    Article  CAS  Google Scholar 

  14. C H. Bjorkman, J. T. Fitch, and G. Lucovsky, Appl. Phys. Lett. 56, 1983 (1990).

    Article  CAS  Google Scholar 

  15. B. Leroy, Phil. Mag. B 55, 159 (1987).

    Article  CAS  Google Scholar 

  16. T. Tamura, N. Tanaka, M. Tagawa, N. Ohmae, and M. Umeno, Jpn. J. Appl. Phys. 32, 12 (1993).

    Article  CAS  Google Scholar 

  17. D. R. Wolters and A. T. A. Zegers-van Duynhoven, Appl. Surf. Sci. 39, 81 (1989).

    Article  CAS  Google Scholar 

  18. J. K. Srivastava, M. Prasad, and J. B. Wagner-Jr, J. Electrochem. Soc. 132, 955 (1985).

    Article  CAS  Google Scholar 

  19. A. Atkinson, Rev. Mod. Phys. 57, 437 (1985).

    Article  CAS  Google Scholar 

  20. H. Z. Massoud, J. D. Plummer, and E. A. Irene, J. Electrochem. Soc. 132, 2693 (1985).

    Article  CAS  Google Scholar 

  21. R. Ghez and Y. J. van der Meulen, J. Electrochem. Soc 119, 1100 (1972).

    Article  CAS  Google Scholar 

  22. S. S. Moharir and A. N. Chandorkar, J. Appl. Phys. 65, 2171 (1989).

    Article  CAS  Google Scholar 

  23. S. A. Schafer and S. A. Lyon, Appl. Phys. Lett. 47, 154 (1985).

    Article  CAS  Google Scholar 

  24. A. M. Stoneham, C. R. M. Grovenor, and A. Cerezo, Phil. Mag. B 55, 201 (1987).

    Article  CAS  Google Scholar 

  25. P. H. Fouss, H. J. Norton, S. Brennan, and A. Fisher-Colbrie, Phys. Rev. Lett. 60, 600 (1988).

    Article  Google Scholar 

  26. A. Ourmazd, D. W. Taylor, J. A. Rentscheir, and J. Bevk, Phys. Rev. Lett 59, 743 (1987).

    Article  Google Scholar 

  27. F. J. Himpsel, F. R. M. Feely, A. Taleb-Ibrahimi, J. A. Yarmoff, and G. Hollinger, Phys. Rev. B 38, 6084 (1988).

    Article  CAS  Google Scholar 

  28. F. Rochet, S. Rigo, M. Froment, C. d’Anterroches, C. Maillot, H. Roulet, and G. Dufour, Adv. Phys. 35, 339 (1986).

    Article  Google Scholar 

  29. J. A. Costello and R. E. Tressler, J. Electrochem. Soc. 131, 1944 (1984).

    Article  CAS  Google Scholar 

  30. S. S. Cristy and J. B. Condon, J. Electrochem. Soc. 128, 2170 (1981).

    Article  CAS  Google Scholar 

  31. F. Rochet, B. Agius, and S. Rigo, J. Electrochem. Soc. 131, 914 (1984).

    Article  CAS  Google Scholar 

  32. E. Rosencher, A. Straboni, S. Rigo, and G. Amsel, Appl. Phys. Lett. 34, 254 (1979).

    Article  CAS  Google Scholar 

  33. I. Trimaille and S. Rigo, Appl. Surf. Sci. 39, 65 (1989).

    Article  CAS  Google Scholar 

  34. H. Niehus, W. Heiland, and E. Taglauer, Surf. Sci. Rept. 17, (1992).

Download references

Acknowledgments

The authors wish to acknowledge partial support of the NSF (DMR 89-075530) and the NAS CAST program.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusev, E.P., Lu, H.C., Gustafsson, T. et al. On the Mechanism of Ultra Thin Silicon Oxide Film Growth During Thermal Oxidation. MRS Online Proceedings Library 318, 69–74 (1993). https://doi.org/10.1557/PROC-318-69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-318-69

Navigation