Skip to main content
Log in

Effect of Surface Modification on the Electrical Properties of TiO2 and SnO2 Nanopowders

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The surface modification of titania and tin dioxide nanopowders by hexamethyldisilazane and hexamethyldisiloxane grafting has been followed in situ by FT-IR spectroscopy. A grafting mechanism is proposed for both compounds and the formation of new surface species is discussed. Since TiO2 and SnO2 are widely used in chemical gas sensors due to their electrical properties, the respective behaviors of the non-grafted and grafted samples in reducing (CO) environment as well as the humidity effects are compared. Because the transmitted IR energy depends on the concentration of the free carriers, a correlation between the electrical conductivity variation and the perturbation of the IR spectra is attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Watson, K. Ihokura and G.S.V. Coles, Meas. Sci. Technol.4, 711 (1993).

    Article  Google Scholar 

  2. J.P. Devlin and V. Buch, Mikrochim. Acta14, 57 (1997).

    CAS  Google Scholar 

  3. W. Riehemann, These proceedings.

  4. M.-I. Baraton, High Temp. Chem. Processes3, 545 (1994).

    CAS  Google Scholar 

  5. A.A. Tsyganenko and V.N. Filimonov, Spectroscopy Letters5, 477 (1972).

    Article  CAS  Google Scholar 

  6. M. Primet, P. Pichat and M.V. Mathieu, J. Phys. Chem.75, 1216 (1971).

    Article  CAS  Google Scholar 

  7. S.W. Ho, J. Chinese Chem. Soc.43, 155 (1996).

    Article  CAS  Google Scholar 

  8. G. Busca, H. Saussey, O. Saur, J.C. Lavalley and V. Lorenzelli, Appl. Catal.14, 245 (1985).

    Article  CAS  Google Scholar 

  9. B.A. Morrow and A.H. Hardin, J. Phys. Chem.83 3135 (1979).

    Article  CAS  Google Scholar 

  10. W. Hertl and M.L. Hair, J. Phys. Chem.75, 2181 (1971).

    Article  Google Scholar 

  11. A.A. Tsyganenko, D.V. Pozdnyakov and V.N. Filimonov, J. Mol. Struct.29, 299 (1975).

    Article  CAS  Google Scholar 

  12. A. Lee Smith, J. Chem. Phys.21, 1997 (1953).

    Article  CAS  Google Scholar 

  13. N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press Ed., New York and London, 1964), p. 295.

    Google Scholar 

  14. S. Lenaerts, J. Roggen and G. Maes, Spectrochim. Acta51A(5), 883 (1995).

    Article  CAS  Google Scholar 

  15. W. Göpel, J. Hesse and J.N. Zemel (eds.), Chemical Sensors, Verlag, Weinheim (1990).

    Google Scholar 

  16. M.-I. Baraton, Sensor and ActuatorsB31, 33 (1996).

    Article  Google Scholar 

  17. F. Chancel, J. Tribout and M.-I. Baraton, Proceedings Euro Ceramic V, Trans Tech Publications, Zuerich, Switzerland, pp. 236–239 (1997).

    Google Scholar 

Download references

Acknowledgement

Dr. Wemer Riehemann and Dr. Hans Ferkel (TU-Clausthal, Germany) are gratefully acknowledged for providing us with Sn02 nanosized powder. This work has been partly performed in the framework of a BRITE-EURAM In project (BRPR-CT95-002) funded by the European Commission.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chancel, F., Tribout, J. & Baraton, MI. Effect of Surface Modification on the Electrical Properties of TiO2 and SnO2 Nanopowders. MRS Online Proceedings Library 501, 89–94 (1997). https://doi.org/10.1557/PROC-501-89

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-501-89

Navigation