Skip to main content
Log in

Investigation of Quasi-Breakdown Mechanism in Ultra-Thin Gate Oxides

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The conduction mechanism of quasi-breakdown (QB) for ultra-thin gate oxide has been studied in dual-gate CMOSFET with a 3.7 nm thick gate oxide. Systematic carrier separation experiments were conducted to investigate the evolutions of gate, source/drain, and substrate currents before and after gate oxide QB. Our experimental results clearly show that QB is due to the formation of a local physically-damaged-region (LPDR) at Si/SiO2 interface. At this region, the effective oxide thickness is reduced to the direct tunneling (DT) regime. The observed high gate leakage current is due to DT electron or hole currents through the region where the LPDR is generated. Under substrate injection stress condition, there is several orders of magnitude increase of Isub (Is/d) at the onset point of QB for n(p) - MOSFET, which mainly corresponds to valence electrons DT from the substrate to the gate. Consequently, cold holes are left in the substrate and measured as substrate current. Under gate injection stress condition, there is sudden drop and even change of sign of Isub (Is/d) at the onset point of QB for n(p)-MOSFET, which corresponds to the disappearance of impact ionization and the appearance of hole DT current from the substrate to the gate. In the LPDR region, the damaged structure may have two or multi metastable states corresponding to different effective oxide thickness. The thermal transition between two or multi metastable states leads to random telegraph switching noise (RTSN) fluctuation between two or multi levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Lee, B. J. Cho, J. C. Kim and S. H. Choi, IEDM Tech. Dig., p. 605 (1994).

    Google Scholar 

  2. K. Okada, S. Kawasaki, and Y. Hirofuji, Ext. Abst. of 1994 lnt. Conf. Solid State Devices and Materials, p.565 (1994).

  3. M. Depas, T. Nigam, and Marc M. Heyns, IEEE Trans. Electron Devices, 43, p. 1499 (1996).

    Article  CAS  Google Scholar 

  4. Kenji Okada, Kenji Taniguchi, Appl. Phys. Lett., 70, p.351, (1997).

    Article  CAS  Google Scholar 

  5. T. Yoshida, S. Miyazaki, and M. Hirose, Ext. Abst. of 1996 Int. Conf. Solid State Devices and Materials, p. 539 (1996).

  6. T. Tomita, H. Utsunomiya, T. Sakura, Y. Kamakura, and K. Taniguchi, IEEE Trans. Electron Devices, 46, p.159 (1999).

    Article  CAS  Google Scholar 

  7. F. Crupi, R. Degraeve, G. Groeseneken, T. Nigam, and H. E. Maes, IEEE Trans. Electron Devices., 45, p.2,329 (1998).

    Article  CAS  Google Scholar 

  8. M. Houssa, T. Nigam, P. W. Mertens and M. M. Heyns, Appl. Phys. Lett., 73, p.514 (1998).

    Article  CAS  Google Scholar 

  9. E. Miranda, J. Sune, R. Rodriguez, M. Nafris and X. Aymerich, Appl. Phys. Lett., 73, p.490 (1998).

    Article  CAS  Google Scholar 

  10. A. S. Ginovker, V. A. Gristsenko and S. P. Sinitsa, Phys.Stat.Sol. (a), 26, p.489 (1974).

    Article  CAS  Google Scholar 

  11. B. Eitan and K. Kolodny, Appl. Phys. Lett., 43, p.106 (1983).

    Article  CAS  Google Scholar 

  12. L. D. Yao, F. T. Liou and S. Chen, IEEE Electron Device Lett., 4, p.261 (1983).

    Article  Google Scholar 

  13. C. Chang, C. Hu and R. W. Brodersen, J. Appl. Phys., 57, p.302 (1985).

    Article  CAS  Google Scholar 

  14. Y. Shi, T. P. Ma, S. Prasad and S. Dhanda, IEEE Trans. Electron Devices, 45, p.2355 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Singapore NSTB Research Grant NSTB/17/2/3 and NUS University Research Project RP3982754.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, H., He, Y.D., Li, M.F. et al. Investigation of Quasi-Breakdown Mechanism in Ultra-Thin Gate Oxides. MRS Online Proceedings Library 592, 131–136 (1999). https://doi.org/10.1557/PROC-592-111

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-592-111

Navigation