Skip to main content
Log in

Atomic-Scale Structure of the Si-SiO2 and SiC-SiO2 Interfaces and the Origin of Their Contrasting Properties

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

One of the reasons for the dominance of Si in microelectronics is the quality of the Si-SiO2 interface. In contrast, development of SiC-based MOSFETs for power applications is hampered primarily by poor carrier mobility at the SiC-SiO2 interface. Here we review recent calculations that elucidate the reasons of the contrasting properties of the two interfaces. In the case of Si, the interface energy is in fact lower when the interface is abrupt and smooth because of the intrinisic geometry of the Si (001) surface and the softness of the Si-O-Si angle. However, two energei-cally degenerate phases are possible, leading to domain boundaries, that are the cause of suboxide bonds, steps, and dangling bonds. In principle, these effects may be avoidable by low-temperature deposition. In contrast, the geometry and bond lengths of SiC surfaces are not suitable for abrupt and smooth interfaces, requiring the existence of a nonstoichiometric interlayer that may be the cause of the reduced mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Pantelides, M. Long, The Physics of SiO2 and its Interfaces, (Pergamon, New York, 1978).

    Google Scholar 

  2. M. DiVentra and S. T. Pantelides, Phys. Rev. Lett. 83, 1624 (1999).

    Article  CAS  Google Scholar 

  3. F. J. Himpsel et al., Phys. Rev. B 38, 6084 (1988): A. Pasquarello et al. Phys. Rev. Lett. 74, 1024 (1995).

    Article  CAS  Google Scholar 

  4. A. Ourmazd et al., Phys. Rev. Lett. 59, 213 (1987).

    Article  CAS  Google Scholar 

  5. H. Akatsu and I. Ohdomari, Appl. Surf. Sci. 41/42, 357 (1989).

    Article  Google Scholar 

  6. A. B. Gurevich et al. Phys. Rev. B 58, R 13434 (1998).

    Article  CAS  Google Scholar 

  7. P.V. Smith and A. Wander, Surf. Sci 219, 77 (1989); Y. Miyamoto and A. Oshiyama, Phys. Rev. B 41, 12680 (1990): T. Hoshino et al., Phys. Rev. B 50, 14999 (1994): N. A. Modine, G. Zumbach, and E. Kaxiras, (unpublished)

    Article  CAS  Google Scholar 

  8. F. Herman and R.V. Kasowski, J. Vac. Sci. Tech. 19, 395 (1985).

    Article  Google Scholar 

  9. A. Pasquarello, M. S. Hybertsen, and R. Car, Appl. Phys. Lett. 68, 625 (1996); Phys. Rev. B56, 10942 (1996); A. Pasquarello, M. S. Hybertsen, R. and Car, Nature 396, 58 (1998)

    Article  CAS  Google Scholar 

  10. H. Kageshima and K. Shiraishi, Phys. Rev. Lett. 81, 5936 (1998).

    Article  CAS  Google Scholar 

  11. M. Ramamoorthy and S.T. Pantelides, Appl. Phys. Lett. 75, 115 (1999).

    Article  CAS  Google Scholar 

  12. R. Buczko, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett., in press.

  13. M.C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992).

    Article  CAS  Google Scholar 

  14. I. Ohdomari, T. Mihara, and K. Kai, J. Appl. Phys. 60, 3900 (1986) used Si-O-Si-Si bridges to build a model interface.

    Article  CAS  Google Scholar 

  15. J. Bernhardt et al., Appl. Phys. Lett. 74, 1084 (1999).

    Article  CAS  Google Scholar 

  16. E.H. Poindexter et al., J Appl. Phys. 52, 879 (1981)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buczko, R., Pennycook, S.J. & Pantelides, S.T. Atomic-Scale Structure of the Si-SiO2 and SiC-SiO2 Interfaces and the Origin of Their Contrasting Properties. MRS Online Proceedings Library 592, 234–239 (1999). https://doi.org/10.1557/PROC-592-227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-592-227

Navigation