Skip to main content
Log in

Molecular Dynamics Simulations of Polymer-Nanotube Composites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The structure and mechanical properties of nanocomposites composed of (10,10) carbon nanotubes in an amorphous polyethylene matrix have been modeled with molecular dynamics simulations. Two systems were studied, an infinite nanotube (via periodic boundaries) and a finite capped nanotube 6 nm in length. In the infinite case the modulus in the direction of the nanotube is given by the upper bound of the rule of mixtures, as expected under isostrain conditions for a well-aligned fiber-reinforced composite. In the finite case, no load transfer is observed at low strain, consistent with the weak nanotube-polymer adhesion and a subcritical nanotube length. The simulations predict that regions of amorphous polymer close to the bulk density remain around the nanotubes at relatively large strains, and that the density decrease during strain results primarily from chain disentanglement and alignment in regions between nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, and L. Forro, Phys. Rev. Lett. 82, p. 944 (1999).

    Article  CAS  Google Scholar 

  2. C. F. Cornwell and L.T. Wille, Solid State Comm 101, p. 555 (1997).

    Article  CAS  Google Scholar 

  3. O. Lourie and H. D. Wagner, J. Mater. Res. 13, p. 2418 (1998).

    Article  CAS  Google Scholar 

  4. L. Jin, C. Bower, and O. Zhou, Appl. Phys. Lett. 73, p. 1197 (1998); C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, Appl. Phys. Lett. 74, p. 3317 (1999).

    Article  CAS  Google Scholar 

  5. L. S. Schadler, S. C. Giannaris, and P. M Ajayan, Appl. Phys. Lett. 73, p. 3842 (1998).

    Article  CAS  Google Scholar 

  6. R. Andrews, B. Dickey, D. Qian, B. Knutson, B. Safadi, B. Moore, and F. Derbyshire, in Carbon ’99, 24th Biennial Conference on Carbon 11-16 July 1999: Extended Abstracts and Program (American Carbon Society, 1999) p. 624.

    Google Scholar 

  7. M. S. P. Shaffer and A. H. Windle, Adv. Materials 11, p. 937 (1999).

    Article  CAS  Google Scholar 

  8. T. R. Forester and W. Smith, The DL_POLY User Manual Version 2.11, CCLRC, Daresbury Laboratory, Daresbury, 1998.

    Google Scholar 

  9. D. W. Brenner, Phys. Rev. B 42, 9458 (1990). A slightly modified form is used for the present calculations. (D. W. Brenner, O.A. Shenderova, S. B. Sinnott, and J. A. Harrison, unpublished).

    Article  CAS  Google Scholar 

  10. J. H. R. Clarke, in Monte Carlo and Molecular Dynamics in Polymer Sciences, edited by K. Binder (Oxford University Press, New York, 1995) p. 272.

  11. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. V. Frankland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frankland, S.J.V., Brenner, D.W. Molecular Dynamics Simulations of Polymer-Nanotube Composites. MRS Online Proceedings Library 593, 199–204 (1999). https://doi.org/10.1557/PROC-593-199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-593-199

Navigation