Skip to main content
Log in

Analysis of Picosecond Pulsed Laser Melted Graphite

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A Raman microprobe and TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582cm−1 and the disorder-induced mode at 1360cm−1 , the average graphite crystallite size in the resolidified region is determined as a function of incident pulse energy density. By comparing with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, additional information about the disorder depth in picosecond pulsed laser melted graphite is obtained. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence. The similarities in the resolidified regions under both irradiation schemes discourages a determination of the properties of liquid carbon after the liquid has resolidified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Venkatesan, D. C. Jacobson, J. M. Gibson, B. S. Elman, G. Braunstem, G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. Lett. 53, 360 1984.

    Article  CAS  Google Scholar 

  2. J. Steinbeck, G. Braunstein, M. S. Dresselhaus, T. Venkatesan, and D. C. Jacobson, J. Appl. Phys. 58, 4374 1985.

    Article  CAS  Google Scholar 

  3. C. Y. Huang, M. Malvezzi, J. M. Yiu, and N. Bloembergen, Beam-Solid Interactions and Phase Transformations: Proceedings of the Materials Research Society (Materials Research Society, Pittsburgh) 1985. A. M. Malvezzi, N. Bloembergen, and C. Y. Huang, Phys. Rev. Lett. 57, 146 1986.

  4. A. Ferraz and N. H. March, Phys. Chem. Liq. 8, 289 1979.

    Article  CAS  Google Scholar 

  5. F. P. Bundy, J. Chem. Phys. 38, 618 1963.

    Article  CAS  Google Scholar 

  6. M. T. Jones, Report PRC-36 (Nat. Carbon Res. Labs., Ohio) 1958.

  7. T. Venkatesan, B. Wilkens, G. Braunstein, J. Steinbeck, and M. S. Dresselhaus, Beam-Solid Interactions and Phase Transformations: Proceedings of the Materials Research Society (Materials Research Society, Pittsburgh) 1985.

    Google Scholar 

  8. N. Bloembergen, Beam-Solid Interactions and Phase Transformations: Proceedings of the Materials Research Society (Materials Research Society, Pittsburgh) 1985.

    Google Scholar 

  9. J. Steinbeck, G. Braunstein, M. S. Dresselhaus, T. Venkatesan, D. C. Jacobson, Energy Beam Solid Interactions and Transient Thermal Processing: Proceedings of the Materials Research Society (Materials Research Society, Pittsburgh) 1984.

    Google Scholar 

  10. J. S. Speck, J. Steinbeck, G. Braunstein, M. S. Dresselhaus, T. Venkatesan, Beam-Solid Interactions and Phase Transformations: Proceedings of the Materials Research Society (Materials Research Society, Pittsburgh) 1985.

    Google Scholar 

  11. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126 1970.

    Article  CAS  Google Scholar 

  12. R. Kelly and J. E. Rothenberg, Nucl. Instr. and Meth. B7/8, 755 1985.

    Article  Google Scholar 

  13. D. W. Gregg and S. J. Thomas, J. Appl. Phys. 37, 2787 1966.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbeck, J., Braunstein, G., Speck, J. et al. Analysis of Picosecond Pulsed Laser Melted Graphite. MRS Online Proceedings Library 74, 263 (1986). https://doi.org/10.1557/PROC-74-263

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-74-263

Navigation