Skip to main content
Log in

The Roles of Energetic Displacement Cascades in Ion Beam Modifications of Materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The roles of energetic displacement cascades are ubiquitous in the fields of radiation damage and ion beam modifications of materials. These roles can be described on two time scales. For the first, which lasts ≈ 10-11 s, small cascade volumes are characterized by large supersaturations of point defects, structural disorder, and energy densities in excess of some tenths of eV's per atom. During this period, the system can be driven far from equilibrium with significant rearrangement of target atoms and the production of Frenkel pairs. Experimental studies of ion beam mixing in conjunction with molecular dynamics computer simulations, have contributed largely toward understanding these dynamic cascade processes. At later times, the microstructure of the material evolves as cascades begin to overlap, or at elevated temperatures, point defects migrate away from their nascent cascades. It will be shown how the primary state of damage in cascades influences this microstructural development. Examples involving radiation-enhanced diffusion and ion-induced amorphization will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Beeler, Jr. and M. F. Beeler, in Fundamental Aspects of Radiation Damage in Metals, USERDA CONF-751006-P1 (1976) p. 28.

  2. See e.g., K. B. Winterbon, Ion Implantation and Energy Deposition Distributions, vol. 2 (Plenum Press, New York, 1975).

  3. J. B. Gibson, A. N. Goland, M. Milgram and G. H. Vineyard, Phys. Rev. 120, 1229 (1960).

    Article  CAS  Google Scholar 

  4. M. A. Kirk and T. H. Blewitt, Met. Trans., 9A, 1729 (1978).

    Article  Google Scholar 

  5. C. Y. Wei, M. I. Current, and D. N. Seidman, Phil. Mag.A, 43, 1419 (1981).

    Article  CAS  Google Scholar 

  6. G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955).

    Article  Google Scholar 

  7. P. Sigmund, Radiat. Effects, 1, 15 (1969).

    Article  Google Scholar 

  8. J. R. Beeler, Jr., Phys. Rev. 150, 470 (1966).

    Article  CAS  Google Scholar 

  9. M. T. Robinson and I. M. Torrens, Phys. Rev.B, 9 (1974) 5008.

    Article  Google Scholar 

  10. R. S. Averback, R. Benedek, and K. L. Merkle, Phys. Rev.B, 18, 4156 (1978).

    Article  CAS  Google Scholar 

  11. P. Jung, J. Nucl. Mater., 117, 70 (1983).

    Article  CAS  Google Scholar 

  12. C.-Y. Wei, M. I. Current, and D. N. Seidman, Phil. Mag. A, 44, 459 (1981).

    Article  CAS  Google Scholar 

  13. M. W. Guinan and J. H. Kinney, J. Nucl. Mater. 108–109, 95 (1982).

    Article  Google Scholar 

  14. M. W. Guinan and J. H. Kinney, J. Nucl. Mater. 103/104, 1319 (1981)

    Article  Google Scholar 

  15. W. E. King and R. Benedek, J. Nucl. Mater. 117, 26 (1983).

    Article  CAS  Google Scholar 

  16. T. Diaz de la Rubia, R. S. Averback, R. Benedek and W. King, unpublished.

  17. W. L. Johnson, Nucl. Instr. and Meth. B, 7/8, 657 (1985).

    Article  Google Scholar 

  18. R. S. Averback, Nucl. Instr. and Meth. B, 15, 675 (1986).

    Article  Google Scholar 

  19. H. H. Anderson, Appl. Phys. 18 (1979) 131.

    Article  Google Scholar 

  20. U. Littmark, Nucl. Instr. Meth. B7/8, 684 (1985).

    Article  Google Scholar 

  21. R. S. Averback, D. Peak, and L. J. Thompson, Appl. Phys. A, 39, 59 (1986).

    Article  Google Scholar 

  22. D. Peak and R. S. Averback, Nucl. Instr. Met. B7/8, 561 (1985).

    Article  Google Scholar 

  23. S.-J. Kim, M-A. Nicolet, R. S. Averback, and D. Peak, Phys. Rev. B, in press.

  24. T. Diaz de la Rubia, R. S. Averback, R. Benedek and W. E. King, (unpublished).

  25. SUPERGLOB was written by J. R. Beeler, Jr., Univ. of N. Carolina.

  26. Y.-T. Cheng, M. Van Rossum, M-A. Nicolet, and W. L. Johnson, Appl. Phys. Lett. 45), 185 (1984.

    Article  CAS  Google Scholar 

  27. H. Westendorp, Z.-L. Wang and F. W. Saris, Nucl. Instr. and Meth. 194, 453 (1982) .

    Article  CAS  Google Scholar 

  28. M. Kloska and O. Meyer, Phys. Rev. Lett. in press.

  29. G. Lück and R. Sizmann, Phys. Stat. Solidi, 5, 683 (1964).

    Article  Google Scholar 

  30. H. J. Wollenberger, in Vacancies and Interstitials in Metals, eds. A. Seeger et al. (North Holland, Amsterdam, 1970) p. 215.

  31. C. A. English and M. L. Jenkins, in Vacancies and Interstitials in Metals and Alloys, ed. C. Abromeit, in press.

  32. T. H. Blewitt, Bull. Am. Phys. Soc., 1957.

  33. E. M. Schulson, J. Nucl. Mater. 83, 239 (1979).

    Article  CAS  Google Scholar 

  34. D. E. Luzzi, H. Mori, H. Fujita, and M. Meshii, Beam-Solid Interactions and Phase Transformations, eds. H. Kurz et al., MRS Symposium Series, Vol. 51, 1986, p. 479.

  35. M. Holz, P. Ziemann and W. Buckel, Phys. Rev. Lett. 51, 1584 (1983).

    Article  CAS  Google Scholar 

  36. H. Mori, H. Fujita, and M. Fujita, Jap. J. Appl. Phys., 22 L94 (1983).

    Article  Google Scholar 

  37. L. M. Howe and M. Rainville, J. Nucl. Mater., 68, 215 (1977).

    Article  CAS  Google Scholar 

  38. H. Mori and H. Fujita, Jap. J. Appl. Phys., 21, L494 (1982).

    Article  CAS  Google Scholar 

  39. J. L. Brimhall, H. E. Kissinger, and L. A. Chariot, Rad. Effs., 77, 273 (1983).

    Article  CAS  Google Scholar 

  40. D. N. Seidman, R. S. Averback and P. R. Okamoto, Phys. Rev. Lett. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averback, R.S., Kim, SJ. & de la Rubia, T.D. The Roles of Energetic Displacement Cascades in Ion Beam Modifications of Materials. MRS Online Proceedings Library 74, 399 (1986). https://doi.org/10.1557/PROC-74-399

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-74-399

Navigation