Skip to main content
Log in

Nanostructured Materials for Microfluidic Sensing Application

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Nanostructured thin films were assembled on interdigited microelectrode (IME) arrays as sensitive interfacial materials of an electrochemical detector, which can be integrated into microfluidic sensor devices. The goal is to produce sensor devices at extremes of miniaturization. The IME were created on glass wafers using conventional lithographic techniques. Open channels were etched on quartz or glass, and covered by PDMS materials, which were created using soft-lithography. The capability of chemical recognition was provided by the ligand framework structures of the nanostructured thin films on the electrode surface. A model system for such nanostructures involved the use of monolayer-capped gold nanoparticles of ∼2 nm core sizes which were assembled by carboxylic acid functionalized alkyl thiol linkers. The detection of dopamine was studied as a redox probe to test the feasibility of the microfluidic device. Results of cyclic voltammetric and chronoamperometric experiments are presented. Implications of the findings to the development of sensitive, selective, rapid and portable microanalytical devices for chemical/biological sensing are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) A. C. Templeton, W. P. Wuelfing, R. W. Murray, Acc. Chem. Res., 2000, 33, 27. (b) A. N. Shipway, E. Katz, I. Willner, ChemPhysChem, 2000, 1, 18.

    Article  CAS  Google Scholar 

  2. C. M. Niemeyer, Angew. Chemie, 2001, 40, 4128.

    Article  CAS  Google Scholar 

  3. N. N. Kariuki, L. Han, N. K. Ly, M. J. Patterson, M. M. Maye, G. J. Liu, C. J. Zhong, Langmuir, 2002, 18, 8255.

    Article  CAS  Google Scholar 

  4. N. N kariuki, J. Luo, L. Han, M. M. Maye, L. Moussa, M. Patterson, Y. Lin, M. H. Engelhard, C. J. Zhong. Electroanalysis (in press).

  5. (a) D. Bethell, M. Brust, D. J. Schiffrin, C. J. Kiely, J. Electroanal. Chem. 1996, 409, 137. (b) M. Brust, C. J. Kiely, D. Bethell, D. J. Schiffrin, J. Am. Chem. Soc., 1998, 120, 12367.

    Article  Google Scholar 

  6. C. J. Zhong, M. M. Maye, Adv. Mater., 2001, 13, 1507.

    Article  CAS  Google Scholar 

  7. C. H. Legge. J. Chem. Edu. 2002, 79 173.

    Article  CAS  Google Scholar 

  8. A. C. Henry, R. L. McCarley. J. Phy. Chem. B, 2001, 105, 8755.

    Article  CAS  Google Scholar 

  9. W. X. Zheng, M. M. Maye, F. L. Leibowitz, C. J. Zhong, Anal. Chem., 2000, 72, 2190.

    Article  CAS  Google Scholar 

  10. F. L. Leibowitz, W. X. Zheng, M. M. Maye, C. J. Zhong, Anal. Chem., 1999, 71, 5076.

    Article  CAS  Google Scholar 

  11. D.S. Koktysh, X.R. Liang, B.G. Yun, I..S. Pastoriza, R.L. Matts, M. Giersig, C.R. Serra, L.M. Liz-Marzan, N.A. Kotov, Adv. Funct. Mater. 2002, 12, 255.

    Article  CAS  Google Scholar 

  12. L. Moussa, The 2001 NNUN REU Research Accomplishments 2001. 24.

  13. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, J. Chem. Soc., Chem. Commun., 1994, 801.

  14. J. Luo, N. Kariuki, L. Han, M.M. Maye, L.W. Moussa, S.R. Kowaleski, F.L. Kirk, M. Hepel, C.J. Zhong, J. Phys. Chem. B. 2002, 106: 9313.

    Article  CAS  Google Scholar 

  15. L. Han, J. Luo, N.N. Kariuki, M.M. Maye,V.W. Jones C.J. Zhong, Chem. Mater. 2003, 15, 29

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Jian Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kariuki, N., Moussa, L., Menard, T. et al. Nanostructured Materials for Microfluidic Sensing Application. MRS Online Proceedings Library 782, 34 (2003). https://doi.org/10.1557/PROC-782-A3.4

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-782-A3.4

Navigation