Skip to main content
Log in

Spherical Aberration Corrected Z-STEM Characterization of CdSe and CdSe/ZnS Nanocrystals

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Spherical aberration corrected Atomic Number Contrast Scanning Electron Microscopy (Z-STEM) has recently demonstrated an amazing ability to not only obtain sub-angstrom levels of detail but also yield chemical information at that level as well. With an optimal probe size of 0.8 Å, extremely detailed images of CdSe nanocrystals were obtained showing the lattice structure and surface morphology. As an example of the usefulness of this technique, a sample of CdSe nanocrystals prepared using trioctylphosphine oxide (TOPO) as the surfactant was compared to a sample of CdSe prepared using a mixture of TOPO and hexadecylamine (HDA) as the surfactant. The TOPO/HDA nanocrystals exhibit a narrower size distribution and several orders of magnitude greater fluorescence compared to that of the TOPO only nanocrystals. Interestingly, the Z-STEM images show a striking difference in nanocrystal morphology as the result of the addition of HDA to the reaction mixture. This result suggests surface morphology can be tuned through judicious choice of surfactant. A second example of Z-STEM imaging involves the characterization of CdSe/ZnS core/shell nanocrystals. The mass contrast afforded by Z-STEM can easily distinguish between core and shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swofford L. A.; Rosenthal S.J. Molecular and Nanomaterial-Based Photovoltaics, in Molecular Nanoelectronics, E M A T Reed, Editor. 2003, American Scientific Publishers.

    Google Scholar 

  2. N.C. Greenham; X Peng; Alivisatos A. P. Phys. Rev. B, 1996. 54,: p. 17628.

    Article  Google Scholar 

  3. Erwin M. M.; Kadavanich A. V.; McBride J.; Kippeny T.; Pennycook S.; Rosenthal S. J.; Eur. J. Phys. D, 2001. 16: p. 275–277.

    Article  CAS  Google Scholar 

  4. Henglein A., Pure Appl. Chem., 1984. 56: p. 1215.

    Article  CAS  Google Scholar 

  5. Henglein A., Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 1997. 101: p. 1562.

    Article  CAS  Google Scholar 

  6. Nanda J.; Sapra S.; Sarma D.; Chandrasekharan N.; Hodes G.; Chem. of Mater., 2000. 12: p. 1018.

    Article  CAS  Google Scholar 

  7. Kho R.; L Nguyen; Torres C. L.-Martinez; Mehra R. K.; Biophys. Res. Commun., 2000. 272: p. 29.

    Article  CAS  Google Scholar 

  8. Dubertret B.; Skourides P.; Norris D. J.; Noireaux V.; Brivanlou A. H.; Libchaber A. Science, 2002. 298: p. 1759.

    Article  CAS  Google Scholar 

  9. Gerion D.; Parak W. J.; Williams S. C.; Zanchet D.; Micheel C. M.; Alivisatos A.P. J. Am. Chem. Soc., 2002. 124: p. 7070.

    Article  CAS  Google Scholar 

  10. Tomlinson I. D.; Mc J.Bride; Blakely R. D.; Rosenthal S. J.; Biotechnology, in press.

  11. Rosenthal S. J.; Tomlinson I. D.; Adkins E. M.; Schroeter S.; Adams S.; Swafford L. A.; Mc J.Bride; Wang Y.; De Felice L. J.; Blakely R. D.; J. Am. Chem. Soc., 2002(124): p. 4586.

    Article  CAS  Google Scholar 

  12. Wu X.; Liu H.; Lui J.; Haley K. N.; Treadway J.A.; Larson P. J.; Ge N.; Peale F.; Bruchez M. P.; Nature Biotechnology, 2003. 21: p. 41.

    Article  CAS  Google Scholar 

  13. Klein D. L.; Roth R.; Lim A. K.; Alivisatos A. P.; McEuen P. L. Nature, 1997. 389: p. 669.

    Article  Google Scholar 

  14. Gao M. Y.; Lesser C.; Kirstein S.; Mohwald H.; Rogach A. L.; Weller H. J. Appl. Phys., 2000. 87: p. 2297.

    Article  CAS  Google Scholar 

  15. Konenkamp R.; Hoyer P.; Wahi A. J. Appl. Phys., 1996. 79: p. 7029.

    Article  Google Scholar 

  16. Vlasov Y. A.; Yao N.; Norris D. J. Adv. Mater., 1999. 11: p. 165.

    Article  CAS  Google Scholar 

  17. Wange X., Qu L.; Zhang J.; Peng X.; Xiao M. Nano Letters, 2003. 3 (8): p. 1103.

    Article  Google Scholar 

  18. Myung N.; Bae Y.; Bard A.J. Nano Lett., 2003. 3 (6): p. 747.

    Article  CAS  Google Scholar 

  19. Manna L.; Scher E. C.; Li L.; Alivisatos A. P. J. Am. Chem. Soc., 2002. 124 (24): p. 7136.

    Article  CAS  Google Scholar 

  20. Donega C. M.; Hickley S.G.; Wuister S. F.; Vanmaekelbergh D.; Meijerink A. J. Phys. Chem. B, 2003. 107: p. 489.

    Article  Google Scholar 

  21. Landes C.; Burda C.; Braun M.; El-Sayed M. A. J. Phys. Chem. B, 2001. 105: p. 2981.

    Article  CAS  Google Scholar 

  22. A.K.A.M. Kadavanich, Tolbert S. H.; Peng X.; Schlamp M. C.; Lee J. C.; Alivisatos A. P.; Adv. Microcryst. Nanocryst. Semicond. 1996, Symp. 1996.

  23. Shiang J.; Kadavanich A.V.; Grubbs R. K.; Alivisatos A. P.; J. Phys. Chem., 1995. 99: p. 17417.

    Article  CAS  Google Scholar 

  24. Peng X. G.; Wickham J.; Alivisatos A. P. J. Am. Chem. Soc., 1998. 120: p. 5343.

    Article  CAS  Google Scholar 

  25. Talapin D. V.; Rogach A. L.; Kronowski A.; Haase M.; Weller H. Nano Lett., 2001. 1 (4): p. 207.

    Article  CAS  Google Scholar 

  26. Peng Z. A.; Peng X. P. J. Am. Chem. Soc., 2001. 123: p. 1389.

    Article  CAS  Google Scholar 

  27. Reis P.; Bleuse J.; Pron A.; Nano Lett., 2002. 2: p. 781.

    Article  Google Scholar 

  28. Reis P.; Caryon S.; Bleuse J., Pron A.; Synth. Met., 2003. 139: p. 649.

    Article  Google Scholar 

  29. Hines M.; P. G., J. Phys. Chem., 1996. 100.

  30. Dabbousi B.; Rodriguez J.-Viejo; Mikulec F.; Heine J.; Matoussi H.; Ober R.; Jensen K.; Bawendi M.; J. Phys. Chem. B., 1997. 101: p. 9463.

    Article  CAS  Google Scholar 

  31. Mattoussi H.; Mauro J. M.; Goldman E. R.; Anderson G. P.; Sundar V.C.; Mikulec F. V.; Bawendi M. G. J. Am. Chem. Soc., 2000. 122 (49): p. 12142.

    Article  CAS  Google Scholar 

  32. Taylor J.; Kippeny T.; Rosenthal S. J. J. Clust. Sci., 2001. 12 (4): p. 571.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Joe Treadway and Quantum Dot Corp. for providing the core/shell nanocrystals and their insight. We would also like to thank Andrew Lupini and the Pennycook research group for assistance with operation of the STEMs. Funding for this research was provided by a Vanderbilt Institute of Nano-Science and Engineering fellowship and by the Department of Energy, grant number (DE-FG0202-ER45957).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McBride, J., Kippeny, T.C., Pennycook, S.J. et al. Spherical Aberration Corrected Z-STEM Characterization of CdSe and CdSe/ZnS Nanocrystals. MRS Online Proceedings Library 818, 342–346 (2004). https://doi.org/10.1557/PROC-818-M8.15.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-818-M8.15.1

Navigation